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EFFECT OF CONJUGATED LINOLEIC ACID FEEDING PERIODS ON 
FATTY ACID PROFILE AND NUTRITIONAL QUALITY OF Astyanax 

altiparanae*

ABSTRACT
The effects of feeding diets with conjugated linoleic acid (CLA) to Astyanax altiparanae for different 
periods were investigated on carcasses’ fatty acid profile and nutritional quality. The trial was laid 
out in a complete randomized design with eight feeding periods (0, 7, 14, 21, 28, 35, 42, and 49 days) 
and four replicates. A total of 240 fish (3.4 ± 0.3 g) were distributed into four aquariums and fed with 
the diet containing 32% crude protein, 15 MJ kg-1 gross energy, and 2.5% of CLA. Feeding CLA diet for 
49 days resulted in the higher deposition of CLA, CLA isomers, and docosahexaenoic acid (DHA). The 
isomer c9,t11 was highly deposited than the t10,c12. Polyunsaturated fatty acids (PUFA), n-3, and 
n-6 increased with feeding period, whereas saturated (SFA), monounsaturated, and medium-chain 
fatty acids decreased. PUFA/SFA ratio, DHA/EPA, EPA+DHA, and thrombogenicity index increased 
linearly. Whereas atherogenicity index reduced, hypocholesterolemic/hypercholesterolemic ratio 
increased in quadratic effects over feeding time. No difference was observed for the n-6/n-3 ratio. 
Feeding A. altiparanae with 2.5% of CLA for a minimum of 35 days improves the fatty acid profile 
and provides a commercial product with good nutritional quality and functional benefits.
Keywords: CLA; deposition rate; fatty acids; healthy traits; nutrition.

EFEITO DO TEMPO DE ALIMENTAÇÃO COM ÁCIDO LINOLEICO CONJUGADO 
NO PERFIL DE ÁCIDOS GRAXOS E QUALIDADE NUTRICIONAL DE Astyanax 

altiparanae

RESUMO
Os efeitos da alimentação com dietas contendo ácido linoleico conjugado (CLA) por diferentes 
períodos foram investigados no perfil de ácidos graxos e na qualidade nutricional das carcaças de 
Astyanax altiparanae. O experimento foi conduzido em delineamento inteiramente causalizado 
com oito períodos de alimentação (0, 7, 14, 21, 28, 35, 42 e 49 dias) e quatro repetições. Um 
total de 240 peixes (3,4 ± 0,3 g) foram distribuídos em quatro aquários e alimentados com dieta 
contendo 32% de proteína bruta, 15 MJ kg-1 de energia bruta e 2.5% de CLA. A alimentação com 
CLA por 49 dias resultou em maior deposição de CLA, isômeros e ácido docosahexaenóico (DHA). 
O isômero c9,t11 foi mais depositado do que o t10,c12. Os ácidos graxos n-3 e n-6 aumentaram 
com o período de alimentação, enquanto os ácidos graxos saturados (SFA), monoinsaturados 
e de cadeia média diminuíram. A razão PUFA/SFA, DHA/EPA, EPA + DHA e índice de 
trombogenicidade aumentaram linearmente. Enquanto o índice de aterogenicidade reduziu, a 
razão hipocolesterolêmica/hipercolesterolêmica aumentou em efeito quadrático com o aumento 
do tempo de alimentação com CLA. Nenhuma diferença foi observada para a razão n-6/n-3. Assim, 
a alimentação de A. altiparanae com 2.5% de CLA por um mínimo de 35 dias melhora o perfil 
de ácidos graxos e fornece um produto comercial com boa qualidade nutricional e benefícios 
funcionais.
Palavras-chave: CLA; taxa de deposição; ácidos graxos; produtos saudáveis; nutrição.

INTRODUCTION

Conjugated linoleic acid (CLA) refers to a group of geometric and positional isomers 
of linoleic acid (18:2n-6) with two conjugated double bonds. The physiological effects 
and health benefits of CLA for humans, which were thoroughly reviewed by Chen and 
Park (2019), are primarily linked to the 18:2 cis-9, trans-11 (c9,t11), and 18:2 trans-10, 
cis-12 (t10,c12) isomers. Although daily CLA intake can vary between countries and 
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individuals (Schmid et al., 2006), the average intake is well 
below the recommended range of 0.6-3.2 g day-1 (Siurana and 
Calsamiglia, 2016). Although it benefits, there are some concerns 
regarding the safety of CLA supplementation in humans (Dilzer 
and Park, 2012) like hepatic steatosis (Ramos et al., 2009), milk 
fat depression impacting infants nutrition (Masters et al., 2002), 
and increase on insulin resistance, the negative effects of CLA 
are still inconsistent (Dilzer and Park, 2012). Because animals 
are not able to synthesize CLA, enriching foods with CLA is one 
way to increase human consumption of this fatty acid, besides 
the enrichment with CLA in foods.

Enhancing CLA levels in animals through the diet can improve 
the nutritional quality of their carcass. It is known that CLA levels 
are related to the expression of transcription factors and other genes 
as well as to the activity of enzymes involved in lipid metabolism 
(Minghetti et al., 2011; Mondragón, 2016; Zou et al., 2018) in a 
lowering-lipid effect. It has been indicated that CLA induces the 
expression of PPARγ and PPARα (Dong et al., 2014), important 
transcription factors for lipid metabolism regulation involved in 
the reduction of lipogenesis and increase on lipolysis, through 
β-oxidation (Minghetti et al., 2011). Also, CLA reduced adipose cell 
mass by inhibiting the activity of lipoprotein lipase, stearoyl-CoA 
desaturase, and fatty acid-binding protein (Park et al., 1999), 
reducing fatty acids uptake and transport (Royan and Navidshad, 
2015). As a result of CLA and its effects on PPARs, activation 
of Δ5 and Δ6 desaturases, enzymes responsible for desaturation 
of polyunsaturated fatty acids into highly unsaturated fatty acids 
have been reported (Kennedy et al., 2006; Pereira et al., 2003; 
Zuo et al., 2013). Thus, enrichment with CLA in fish diets will 
not only result in increased CLA in fish tissues, but it can also 
reduce total lipid deposition (Mersmann, 2002) and improve its 
nutritional quality (Kennedy et al., 2007).

Though not able to synthesize CLA as well as other animals, 
when fed dietary CLA, some fish species can incorporate this fatty 
acid into the muscle, e.g. Salmon salar (Kennedy et al., 2005), 
Oncorhynchus mykiss (Valente et al., 2007), and Dicentrarchus 
labrax (Makol et al., 2013). Others incorporate it into the whole 
body, such as Pelteobagrus fulvidraco (Tan et al., 2010); whole 
body and filet, such as Oreochromis niloticus (Dos Santos et al., 
2011); or in the carcass, as seen in Astyanax altiparanae 
(Campelo et al., 2015).

Astyanax altiparanae is an omnivorous species with a high 
carcass yield (70-85%) (Ferreira et al., 2014; Campelo et al., 2015; 
Salaro et al., 2015). The A. altiparanae market consists of two 
slaughter sizes, 4-5 g and 10 g, and the fish has great relevance as 
bait, in sport fishing, in snacks (Porto-Foresti et al., 2005), and as 
a canned product (Dutra et al., 2012). Astyanax altiparanae has 
also been highlighted as a useful experimental research model 
(Pontes et al., 2019) due to its small size, prolificacy, and short 
production cycle. The ability of A. altiparanae to incorporate CLA 
by dietary intake was verified by Campelo et al. (2015). After 90 
days of trial, the authors concluded that the highest incorporation 
of CLA in A. altiparanae carcass was archived by fish fed the 
diet with the highest CLA inclusion, 2.5% of total fatty acids 
diet. In general, the studies that evaluate the ability of fish to 
incorporate CLA through dietary intake focused on increasing 

levels of CLA into the diets (Kennedy et al., 2005; Valente et al., 
2007; Tan et al., 2010; Dos Santos et al., 2011; Makol et al., 
2013). However, the ability of fish to modify its fatty acid reflects 
not only the species or dietary composition but also the time of 
feed administration (Twibell et al., 2001; Justi et al., 2003). Few 
studies have evaluated the effect of feeding time on the deposition 
of CLA in fish regarding the quality of the final product for the 
consumers (Dos Santos et al., 2011; Ramos et al., 2008) with 
the ideal feeding time varying between 30 to 56 days for Nile 
tilapia (Dos Santos et al., 2011) and rainbow trout (Ramos et al., 
2008), respectively. Considering the differences between species 
and the costs involved in the inclusion of commercial CLA into 
the diets, become essential to determinates the minimum feeding 
period of dietary CLA that allows high and acceptable deposition 
of CLA into fish tissues.

Therefore, this study was carried out to evaluate the effects of 
feeding a diet with CLA to A. altiparanae for different periods on 
CLA incorporation by the animal, fatty acid profile, and carcass 
nutritional quality index.

MATERIAL AND METHODS

Research on animals was conducted according to the institutional 
committee on animal use and was approved by the Ethical Principles 
for Animal Research (approval. no 01/2014) established by the 
National Council of Animal Experimentation Control (CONCEA) 
on February 12, 2014.

The formulated test diet contained 32% of crude protein, 
15 MJ kg-1 gross energy and 2.5% of CLA (Table 1). The CLA 
inclusion level was based on Campelo et al. (2015). Commercial 
CLA (LUTA-CLA® 60-BASF, São Paulo, SP, Brazil) was used, 
containing 60% CLA methyl esters as a 50:50 mixture of c9,t11 
and t10,c12 isomers.

The experimental diet was prepared by grinding all dry macro 
ingredients in a hammer mill (TRF-400 Trapp, Jaraguá do Sul, SC, 
Brazil) to a powder (0.5-mm sieve). Micro and macro ingredients 
were manually mixed. Conjugated linoleic acid was first mixed 
with soybean oil in the amount of 2.5%, which was then added 
to the dry mixture along with 500 mL kg-1 of water (50°C). The 
diet was pelleted in an electric meat grinder (Tecnal, Piracicaba, 
SP, Brazil) and then dried in a forced-recirculation oven at 50°C 
for 24 h. Pellets were ground in a hammer mill (TRF-400 Trapp), 
passed through a 2.0-2.5 mm sieve (Tecnal), and then stored at 
–20°C until use.

The trial was set up using a completely randomized design 
with eight treatment durations (0, 7, 14, 21, 28, 35, 42, and 
49 days in which a diet supplemented with CLA was provided), 
with four replicates each. To compound the control group (time 
zero), fish were sampled at the beginning of the trial, without 
any contact with the diet containing CLA. Astyanax altiparanae 
juveniles (3.4 ± 0.3 g) were stocked at a density of 0.3 fish L-1 
in circular polyethylene aquariums (200 L of water), with each 
experimental unit consisting of an aquarium with 60 fish. The 
aquariums were equipped with mechanical and biological filters, 
constant aeration systems, and continuous water flow systems. 
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The system allowed a total water exchange of five times a day in 
each aquarium. Water temperature was maintained at 28 ± 1 °C, 
dissolved oxygen levels were 6.5 ± 1 mg L-1, total ammonia 
was below 0.02 mg L-1, and pH was 6.5 ± 0.3. Water parameters 
were measured weekly using a multiparameter meter (HI 9828, 
Hanna Instruments, Barueri, SP, Brazil). The water temperature 
was monitored daily using a standard alcohol thermometer. The 
photoperiod was adjusted to 12 h using fluorescent lamps (60 W) 
with a timer control.

Fish were fed the experimental diet four times daily (8h00, 
11h00, 14h00, and 17h00) to satiation, for a total of 49 days. On 
the first day and every seven days thereafter, seven fish were 
sampled per replicate. They were then slaughtered with a super 
dosage of clove oil (400 mL L-1). The fish carcasses were washed 
with distilled water to remove possible residues of clove oil, 
according to Kildea et al. (2004). Carcass was considered fish 
without scales and viscera.

For the total lipid determination, the fish from each replicate 
were crushed and homogenized. Then 15-g samples were extracted 
with a mixture of chloroform, methanol, and water (2:2:1, 8 v/v), 
according to the Bligh and Dyer (1959) method.

Fatty acid methyl esters (FAME) were prepared according to 
Hartman and Lago (1973). The methyl esters were separated 
using a CP-3380 gas chromatograph (Varian, USA) equipped with 
a flame ionization detector and a fused silica capillary column 
(100 m × 0.25 mm id × 0.25 μm cyanopropyl film thickness) 
(Varian FAME Select CP-7420). The gas (White Martins) flow 
rates were 1.2 mL min-1 for the carrier gas (H2), 30 mL min-1 for 
the make-up gas (N2), 30 mL min-1 for the flame gas (H2), and 
300 mL min-1 for synthetic air. The sample split ratio was 1/100. 
The chromatographic conditions for the FAME separations were 
optimized from the previous study, it was used injection point 
and detector temperatures of 220 and 240°C, respectively. The 
oven conditions of the method used an initial column temperature 
programmed to 165°C for 12 min, increased from 165 to 235°C 
at 5°C min-1, and kept at 235°C for 9 min (Campelo et al., 2015). 
The FAME were identified by comparison to the retention times 
of a mixture of FAME and methyl esters containing the c9, t11 
and t10, cis12 geometric isomers of CLA (189-19 and O5632 
Sigma, Saint Louis, MO, USA) and by spiking samples with the 
standard. All samples (2 µL) were injected in duplicate. Peak 
areas were determined using Star 5.0 software (Varian, Palo 
Alto, CA, USA), and data were expressed as percentages of the 
normalized area of fatty acids.

To investigate the nutritional lipid quality of fish as well as the 
modifications along the time of feed administration, important 
indicators of nutritional quality index (NQI) were used as 
suggested by Ulbricht and Southgate (1991), Santos-Silva et al. 
(2002), and Rodrigues et al. (2017). Polyunsaturated/saturated 
fatty acid (PUFA/SFA) ratio, n-6/n-3 ratio, docosahexaenoic/
eicosapentaenoic acid (DHA/EPA) ratio, EPA+DHA, atherogenicity 
index (AI), thrombogenicity index (TI), and hypocholesterolemic/
hypercholesterolemic ratio (h/H) were determined as follows:

"AI = (4 × C14:0 + C16:0) / ( MUFA + n-6 + n-3)"∑ ∑ ∑

Table 1. Formulation, chemical composition, and fatty acid 
profile1 of the experimental diet (dry matter basis) with 2.5% of 
CLA inclusion.

Ingredient2 (%, as-fed)
Soybean meal 40.0
Cottonseed meal 10.0
Corn gluten meal 12.73
Cornmeal 8.05
Wheat bran 10.0
Rice meal 9.0
Soybean oil 0.5
CLA3 4.5
L-lysine 0.4
DL-methionine 0.2
Dicalcium phosphate 3.5
Mineral and vitamin mix4 0.5
Vitamin C 0.1
Salt 0.5
Butylated hydroxytoluene5 0.02
Total 100.0
Chemical composition (%)d

Dry matter (%, as-fed) 93.5
Crude protein 31.9
Crude lipid 9.4
Ash 10.2
Gross energy (MJ kg-1)6 15.9

Fatty acid profile
Results expressed as a 

percentage (%) of the total 
fatty acids

14:00 0.015
16:00 1.10
18:00 0.32
18:1 n-9 3.09
18:2 n-6 2.45
18:3 n-6 0.007
18:3 n-3 0.16
18:2 (c9,t11) 1.18
18:2 (t10,c12) 1.67
SFA 1.44
MUFA 3.09
PUFA 5.48
PUFA/SFA 0.38
n-6 2.46
n-3 0.16
n-6/n-3 15.38
Total CLA 2.86
CLA - conjugated linoleic acid; SFA - saturated fatty acids; MUFA - monounsaturated fatty 
acids); PUFA - polyunsaturated fatty acids. 1The fatty acids were identified and determined 
at the Cromalimentos Laboratory (State University of Maringa, PR, Brazil). 2Manufacturers: 
Soybean meal, corn meal, corn gluten meal (Cargill Inc., Brazil); cottonseed meal (Maeda 
S.A., Brazil), wheat bran (Vilma Alimentos, Brazil); rice meal (Rozcampo, Brazil); dicalcium 
phosphate (Serrana S.A., Brazil); salt (National Refinery S.A., Brazil); soybean oil (ADM 
Ltd., Brazil); DL-methionine (Evonik Ind., Brazil); L-lysine (Ajinomoto Ind. and Com. Ltd., 
Brazil); vitamin C (Saint Charbel Farm., Brazil). 3LUTA-CLA 60®, BASF, São Paulo, SP, 
Brazil, containing 60% of CLA. 4 Provides per kilogram of product: vit. A - 1,200,000 IU; 
vit. D3 - 200,000 IU; vit. E - 12,000 mg; vit. K3 - 2,400 mg; vit. B1 - 4,800 mg; vit. B2 - 
4,800 mg; vit. B6 - 4,000 mg; vit. B12 - 4,800 mg; folic acid - 1,200 mg; calcium pantothenate 
- 12,000 mg; vit. C - 48,000 mg; biotin - 48 mg; choline - 65,000 mg; niacin - 24,000 mg; 
Fe - 10,000 mg; Cu - 6,000 mg; Mg - 4,000 mg; Zn - 6,000 mg; I - 20 mg; Co - 2 mg; Se - 
20 mg (Guabi Nutrição Animal, Brazil). 5 ISOFAR Ind., Brazil. 6Values determined at the 
Laboratory of Animal Science of Federal University of Viçosa, MG, Brazil. Crude protein 
was analyzed according to Silva and Queiroz (2002). Total lipids, dry matter, and ash were 
determined based on the methods of the Association of Official Analytical Chemists (AOAC, 
2000) and gross energy was determined using a bomb calorimeter.



EFFECT OF CONJUGATED LINOLEIC ACID FEEDING PERIODS...

Oliveira et al.,  Bol. Inst. Pesca 2021, 47:  e618. https://doi.org/10.20950/1678-2305/bip.2021.47.e618. 4/10

"TI = (C14:0 + C16:0 + C18:0)/(0.5 × MUFA +
 0.5 × n-6 + 3 × n-3 + 100 × n-3/ n-6)"

∑
∑ ∑ ∑ ∑

"h/H = (C18:1n9 + C18:2n-6 + C20:4n-6 + C18:3n-3 + 
C20:5n-3 + C22:6n-3) / (C14:0 + C16:0)"

The statistical model was as follows:

      yij ti eijµ= + + ;

in which y: response variable; μ: parametric mean; ti: effect of 
treatment level i; and eij: experimental error.

Data were expressed as mean ± pooled standard error of the 
mean (SEM). Normality and homogeneity of variances were 
tested using the Shapiro-Wilk and Levene tests, respectively. 
All statistical procedures were performed using SPSS software 
package for Windows (IBM® SPSS® Statistics, New York, USA). 

ANOVA of the regression was applied, with a decomposition 
of the treatment effect in orthogonal polynomial contrasts for 
linear and quadratic effects of days of CLA feeding. Principal 
component analysis (PCA) was conducted on the specific and total 
fatty acids and nutritional quality indexes to identify clustering. 
Pearson’s correlation coefficient test was selected to perform 
correlation analyses.

RESULTS

Feeding duration significantly modified the incorporation in 
% of total fatty acids of CLA and its isomers and the fatty acid 
profile of the fish carcasses (Table 2). The incorporation of CLA in 
the fish carcasses increased quadratically throughout the feeding 
trial. The CLA isomers showed distinct incorporation patterns, 
which included a linear effect for t10,c12 and a quadratic effect 
for c9,t11 (Figure 1).

Table 2. Fatty acid profile (% of total fatty acids) and nutritional quality indexes in the carcass of A. altiparanae fed a diet with 
2.5% of CLA for different periods1.

Fatty acid Days of feeding SEM Contrast2

0 7 14 21 28 35 42 49 Linear Quadratic
16:00 22.87 22.99 21.78 20.94 21.71 21.53 21.13 21.25 0.2 0.003 0.002
18:00 7.45 7.66 7.34 7.31 7.42 7.27 7.29 7.36 <0.1 0.040 0.366
16:1n5 4.01 3.61 3.52 3.43 3.34 3.21 3.03 3.07 0.1 <0.001 <0.001
18:1n9 43.23 41.29 42.00 43.07 41.54 40.68 39.81 39.63 0.3 <0.001 0.020
18:2n6 11.29 12.31 12.32 12.53 12.50 13.18 13.43 13.58 0.1 <0.001 0.149
18:2c9t11 0.00 0.21 0.31 0.36 0.75 1.10 1.37 1.29 0.1 <0.001 0.003
18:2t10c12 0.00 0.22 0.26 0.32 0.57 0.80 0.96 0.96 0.1 <0.001 0.094
18:3n3 0.74 0.77 0.77 0.83 0.83 0.76 0.83 0.79 <0.1 0.038 0.038
20:4n6 0.05 0.05 0.06 0.07 0.06 0.05 0.06 0.05 <0.1 0.456 0.006
20:5n3 0.16 0.17 0.18 0.21 0.18 0.16 0.17 0.18 <0.1 0.618 0.014
22:6n3 1.14 1.25 1.52 1.26 1.22 1.36 1.54 1.61 <0.1 <0.001 0.147
Total CLA 0.00 0.44 0.57 0.68 1.32 1.90 2.33 2.25 0.2 <0.001 0.003
SCFA nd nd nd nd nd nd nd nd
MCFA 0.07 0.05 0.05 0.05 0.06 0.04 0.04 0.05 <0.1 <0.001 0.029
LCFA 95.31 94.74 94.12 94.55 94.72 94.40 93.94 93.82 0.1 <0.001 0.618
SFA 32.09 32.29 30.78 29.90 30.85 30.40 30.01 30.21 0.2 0.004 0.008
MUFA 57.07 51.03 52.16 52.90 51.43 50.55 49.92 49.62 0.3 <0.001 0.002
PUFA 14.84 16.57 17.06 17.21 17.72 19.06 20.07 20.16 0.4 <0.001 0.580
n-6 12.08 13.14 13.16 13.40 13.35 14.03 14.31 14.45 0.2 <0.001 0.144
n-3 2.76 3.00 3.33 3.13 3.04 3.13 3.43 3.47 0.1 <0.001 0.786
c10,t12/c9,t11 0.00 1.02 0.86 0.87 0.76 0.73 0.70 0.75 <0.1 <0.001 <0.001
PUFA/SFA 0.46 0.51 0.55 0.58 0.57 0.63 0.67 0.67 <0.1 <0.001 0.213
n6/n3 4.37 4.39 3.96 4.28 4.39 4.49 4.17 4.17 <0.1 0.425 0.767
DHA/EPA 7.12 7.14 8.62 6.15 6.90 8.31 9.15 9.09 0.2 0.001 0.001
EPA+DHA 1.30 1.42 1.69 1.47 1.39 1.52 1.70 1.78 <0.1 <0.001 0.255
AI 0.44 0.46 0.43 0.40 0.43 0.43 0.42 0.42 <0.1 0.032 0.002
TI 0.16 0.17 0.19 0.16 0.16 0.16 0.18 0.18 <0.1 0.031 0.442
h/H 2.38 2.34 2.52 2.67 2.50 2.52 2.56 2.54 <0.1 0.013 0.002

CLA (Conjugated Linoleic Acid); SFA (Saturated fatty acid); MUFA (Monounsaturated fatty acid); PUFA (Polyunsaturated fatty acid); MCFA (Medium-chain fatty 
acids); LCFA (Long-chain fatty acids); EPA (Eicosapentaenoic acid); DHA (Docosahexaenoic acid); AI (Atherogenicity Index); TI (Thrombogenicity Index); h_H 
(Hypocholesterolemic/hypercholesterolemic ratio). 1Values presented as means (n = 12) and pooled standard error of the mean (SEM).
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A linear increase for linoleic acid (18:2n-6) and a quadratic effect 
for linolenic acid (18:3n-3) was observed as the feeding period 
increased. Docosahexaenoic acid (22:6n-3) increased linearly 
after 49 days of feeding, while EPA (20:5n-3) and arachidonic 
acid (ARA, 20:4n-6) presented quadratic effects.

Quadratic effects were observed for saturated (SFA) and 
monounsaturated fatty acid (MUFA) incorporation with feeding 
time. After 49 days of feeding, the content of SFA reduced from 
32 to 30% of total fatty acids, whereas MUFA decreased from 57 
to 50%. Polyunsaturated fatty acids and n-3 and n-6 fatty acids 
increased linearly with the feeding period. Every seven days 
throughout the trial, a 1.03% increase in PUFA was observed 
in the fish carcasses. There were not detected short-chain fatty 
acids in fish carcasses. The sum of medium-chain (MCFA) and 
long-chain fatty acids (LCFA) also decreased linearly with feeding 
time. Additionally, the t10,c12/c9,t11 ratio in the carcasses reduced 
quadratically with the CLA feeding period, with ratios close to 
1.0 observed in the fish fed the CLA diet for seven days and 0.75 
in those which received it for 49 days.

As the CLA feeding period increased, PUFA/SFA, EPA+DHA, 
and TI in the fish carcasses also increased (Table 2). A quadratic 
effect was observed for DHA/EPA and AI. No difference was 
observed for the n-6/n-3 ratio.

Principal component analysis was used to visualize data 
groupings, associations, and correlations between feeding period, 
specific fatty acids, total fatty acids (SFA, MUFA, PUFA, MCFA, 
LCFA, n-3, and n-6), and NQI (TI, AI, h/H, n-6/n-3, PUFA/
SFA, DHA/EPA, and EPA+DHA). Strong associations were 
found as evaluated by Pearson’s correlation coefficient between 
specific fatty acids, total fatty acids, and NQI for the fish fed 
CLA for increasing periods (Table 3). Similarly, CLA isomers 
and total CLA were positively correlated (r >0.90) with PUFA, 
n-6 fatty acid, PUFA/SFA ratio, and feeding period. A negative 
correlation was observed for CLA (-0.67) and its isomers c9t11 

and t10c12 (-0.68 and -0.67, respectively) for the sum of MCFA. 
There was no strong correlation between feeding period or CLA 
and the h/H, AI, and TI indexes (r<0.50); however, SFA were 
negatively correlated with h/H (r = -0.96) and positively with 
the AI index (r = 0.93). The TI index was negatively correlated 
with the n-6/n-3 ratio (r = -0.89) and positively with DHA (0.86), 
n-3 fatty acids (0.84), and EPA+DHA (0.87). The DHA and n-3 
fatty acid contents were positively correlated with EPA + DHA 
(r ≥0.97). Between the n-6 and n-3 fatty acids, n-6 was mainly 
responsible for the increases in PUFA (r = 0.99) and PUFA/SFA 
(r = 0.98) in fish carcasses.

Principal component analysis explained 75.40% of the observed 
variance (Figure 2); principal component 1 contributed most 
to the variance (59.39%), followed by component 2 (16.02%). 
Principal component 1 divided the data into two groups. The first, 
which consisted of 35, 42, and 49 days of feeding with CLA, was 
positively correlated with most healthy fatty acids, including 
CLA, PUFA, n-3, and NQI (h/H, PUFA/SFA, DHA/EPA, and 
EPA+DHA). The second group, consisting of 0, 7, 14, 21, and 
28 days of feeding with CLA, was associated with parameters 
correlated with the excess of lipid deposition and consequently 
health disturbs (SFA, MUFA, MCFA, and respective specific 
fatty acids) and NQI (AI and n-6/n-3).

Figure 1. CLA incorporation in the carcass of A. altiparanae fed 
a diet with 2.5% of CLA for different periods. CLA - conjugated 
linoleic acid (y = 0.0001x2 + 0.0443x - 0.0124, r 2 = 0.9511); 
18:2c9t11 (y = 1E-04x2 + 0.025x - 0.0232, r2 = 0.9436); 18:2t10c12 
(y = 0.0209x - 0.0006, r 2 = 0.9578).

Figure 2. Specific fatty acids (FA), total FAs, nutritional quality 
index (NQI) and days of the different feeding time in the plane 
defined by two principal components. CLA (Conjugated Linoleic 
Acid); SFA (Saturated fatty acid); MUFA (Monounsaturated fatty 
acid); PUFA (Polyunsaturated fatty acid); MCFA (Medium-chain 
fatty acids); LCFA (Long-chain fatty acids); EPA (Eicosapentaenoic 
acid); DHA (Docosahexaenoic acid); DHA_EPA (DHA/EPA 
ratio); PUFA_SFA (PUFA/SFA ratio); EPADHA (EPA+DHA); 
AI (Atherogenicity Index); TI (Thrombogenicity Index); h_H 
(Hypocholesterolemic/hypercholesterolemic ratio).
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DISCUSSION

The observed incorporation of CLA in A. altiparanae carcasses was 
higher than the levels naturally found in beef (0.12 - 1.0%), sheep 
meat (0.43 - 1.9%), dairy products (0.03 - 0.55%) (Schmid et al., 
2006) which are considered to be the main natural sources of CLA 
in the human diet, and so for some fish species (0.01 - 0.09%) 
(Fritsche and Steinhart, 1998). The incorporation of CLA in A. 
altiparanae carcasses obtained in the present study highlighted 
the ability of this species to incorporate CLA, compared to other 
fish species also fed diets that included CLA.

For instance, feeding 2.5% of CLA to juvenile A. altiparanae 
for 49 days resulted in 2.25% of CLA in the fish carcass, while 
feeding 10% of CLA to juvenile D. labrax for 140 days resulted 
in CLA incorporation of 1.45% in the carcass (Makol et al., 
2013). Similarly, O. mykiss fed 1% of CLA for 140 days showed 
a CLA content of only 1.3% in the carcass (Ramos et al., 
2008). Oreochromis niloticus fed 1% of CLA for 60 days (Dos 
Santos et al., 2011) and Piaractus mesopotamicus fed 1% of CLA 
for 49 days (Barilli et al., 2014) had similar CLA incorporation 
in the filet when compared with A. altiparanae (3.3 and 2.0% of 
CLA, respectively). In addition to species, other factors such as 
diet supplementation, feeding time, ingredient composition, and 
the proportion of CLA isomers in the diet may also affect CLA 
incorporation in animal tissues (Azain, 2003).

Greater incorporation of c9,t11 relative to t10,c12 (1.37 and 
0.96%, respectively) may be associated with differences in 
the metabolism of isomers by this fish species. According to 
Martin et al. (2000), the t10,c12 isomer could promote lipid 
oxidation as a result of the position of its double bonds. Higher 
incorporation of c9,t11 relative to t10,c12 was also observed for 
O. mykiss (Bandarra et al., 2006), P. fulvidraco (Tan et al., 2010), 
O. niloticus (Dos Santos et al., 2011), and Synechogobius hasta 
(Tan et al., 2014) fed increasing levels of CLA. Considering the 
observed reductions in the t10,c12/c9,t11 ratio as the duration 
of feeding increased, it can be inferred that it was caused by 
the difference between the incorporation rates of CLA isomers. 
These results suggest that CLA isomers could be included in the 
diet in certain proportions, to maintain equimolar proportions of 
isomers incorporated into animal tissues, with a higher dietary 
intake of t10,c12 than c9,t11.

The duration of feeding a diet with 25 g CLA kg-1 has a 
significant impact on the fatty acid profile of fish carcass. 
Increased incorporation of n-6, n-3 in the fish carcass, in addition 
to reductions in the levels of SFA and MUFA until a certain feeding 
period, may be associated with changes in lipid metabolism 
caused by CLA, such as induction of β-oxidation and changes 
in the gene expression of transcription factors and enzymes, 
increase on the expression of PPARγ and PPARα (Dong et al., 
2014) and downregulation of enzymes involved on fatty acids 
uptake and de novo fatty acids synthesis (Royan and Navidshad, 
2015). In the group of fatty acids, SFA and MUFA are preferable 
substrates for β-oxidation when compared with PUFA, and n-6 
fatty acids are more suitable for oxidation than n-3 (Henderson, 
1996). Because one of the effects of CLA on lipid metabolism is 
to induce β-oxidation, due to increases in activity and expression 

of carnitine palmitoyltransferase type I (Nagao et al., 2005), 
this effect may have caused reductions of SFA and MUFA in A. 
altiparanae carcasses. Moreover, several studies have suggested that 
CLA can alter the expression of genes related to lipid metabolism 
(Yessoufou et al., 2009; Minghetti et al., 2011; Mondragón, 2016; 
Zou et al., 2018), especially the peroxisome proliferator activated 
receptors (PPARs), which act as transcription factors in various 
tissues such as liver, muscle, and adipose tissue (Yessoufou et al., 
2009). Peroxisome proliferator-activated receptor alpha (PPARα) 
and gamma (PPARγ) are of great importance to the regulation 
of lipid metabolism (Minghetti et al., 2011), with increases in 
their activity being correlated with reductions in lipogenesis and 
increases in lipolysis through β-oxidation.

For instance, diets with increasing levels of CLA (up to 3% 
of) fed to Ctenopharyngodon idella altered the activation of 
transcription factors (PPARα and PPARγ), lipogenic enzymes 
(fatty acid synthetase and acetyl-CoA carboxylase), lipolytic 
enzymes (hormone-sensitive lipase), and lipoprotein transporters 
(lipoprotein lipase) (Dong et al., 2014). In Salmo salar L. fed 10 
and 20 g CLA kg-1, a positive relationship was found between the 
PPARα gene expression levels and the activation of the Δ5 and Δ6 
desaturase enzymes (Kennedy et al., 2006), front-end desaturases 
responsible for catalyzing the introduction of double bonds into 
linoleic acid (18:2n-6) and linolenic acid (18:3n-3) chains, that 
after the action of elongases, convert them to ARA (20:4n-6), 
EPA (20:5n-3), and DHA (22:6n-3), respectively (Pereira et al., 
2003). Zuo et al. (2013) suggested that the increase in highly 
unsaturated fatty acids (HUFA) in the muscle of Larimichthys 
crocea fed diets with increasing levels of CLA (0, 0.42, 0.83, 
and 1.7% of) may be due to an increase in the expression of the 
Δ5 and Δ6 desaturases.

Throughout the duration of feeding with CLA, fatty acids 
probably underwent the elongation and desaturation processes, 
ultimately being converted to HUFA, mainly through the n-3 
series, since increases in DHA in fish carcasses were much more 
apparent than its precursor. The decreases in EPA observed in 
the A. altiparanae carcass, after 21 days of feeding with CLA, 
may be related to preference for DHA synthesis in this species, 
as DHA is synthetized from EPA (Sprecher, 2000). Additionally, 
Murru et al. (2018) proposed that a ratio of CLA to α-linolenic 
acid (ALA) around 3:1 may enhance DHA production from 
ALA. In this respect, our data demonstrate that the inclusion of 
CLA in fish feed is clearly a good strategy to improve the DHA 
content in fish by-products. It is even more efficient than dietary 
ALA intake, since the CLA/ALA ratio after 35, 42, and 49 days 
of feeding ranged between 2.5 to 2.8, which is close to ratios 
recommended by Murru et al. (2018).

The opposite was observed for ARA and linoleic acid, where 
only a slight level of incorporation of ARA was observed. It is 
known that this fatty acid and CLA compete for biding sites 
(Whigham et al., 2002; Park and Pariza, 2007; Stachowska et al., 
2009), which could be a reason for the observed reductions in 
ARA in fish carcasses after 21 days of feeding. Another reason 
could be due to a potential preference for the elongation and 
desaturation of the n-3-series fatty acids (Tocher and Sargent, 
1990) over the n-6.
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Considering the biological effects and functions of fatty acids 
on human health, calculating the nutritional quality indexes of 
fatty acid profiles is highly important for indicating the quality of 
products as well as for recommendations to be made about food 
intake for humans. To be considered a healthy product for human 
consumption, the PUFA/SFA ratio must be at least 0.45, and the 
greater the PUFA concentration relative to SFA, the healthier 
the product (England Department of Health, 1994). Therefore, 
considering the PUFA/SFA ratios observed in the fish carcasses, 
A. altiparanae fed 2.5% of CLA for 49 days can be considered a 
healthy product for human consumption. Another notable highlight 
from this study is that the longer the duration of feeding with 
CLA the higher PUFA/SFA ratio. Even the increase in PUFA 
(in % of total fatty acids) might be due to the reduction on SFA 
as a dilution effect, the increase in PUFA/SFA ratio reflects the 
benefits of CLA incorporation into the final product.

The recommended n-6/n-3 ratio to which health benefits for 
humans have been attributed is around 1:1 to 5:1 (England 
Department of Health, 1994; Gómez-Candela et al., 2011). The 
duration of feeding with a CLA-rich diet did not promote changes 
in n-6/n-3 ratios in the tested fish carcasses, which remained 
close to 4:1 and within the optimal range recommended for 
human health. However, the differences observed with respect 
to the EPA + DHA content in the fish carcasses highlight the 
importance of the duration of feeding with CLA in improving 
the nutritional value of this species for human consumption. Fish 
fed the CLA diet for 49 days had 1.79 g of EPA + DHA in 100 
g-1 of Total Lipids, which corresponds to 603.8 mg per 100 g 
of tissue. According to the European Commission Regulation, 
2010 (EU) 116/2010 products with an EPA + DHA content of 
over 40 mg 100 g-1 can be considered good sources of omega 3 
fatty acids for human consumption. Thus, A. altiparanae fed a 
commercial diet is considered an omega 3 source for humans. 
However, when fed 2.5% of CLA for 49 days, its nutritional value 
in terms of EPA + DHA content improved by 40%. Therefore, 
it is important to highlight A. altiparanae as a good source of 
PUFA n-3 for humans, which is even more true for fish fed diets 
that would maximize this characteristic.

The hypocholesterolemic/hypercholesterolemic ratio is used to 
express the effects of fatty acids on cholesterol metabolism, and 
high values are correlated with health benefits (Santos-Silva et al., 
2002). On the other hand, low atherogenicity and thrombogenicity 
indexes are preferable and have been related to reduced risk 
of coronary disease through reductions in plaque aggregation, 
circulating cholesterol, and clot formation in circulating blood 
(Ulbricht and Southgate, 1991). Even though slight increases in 
were observed in TI in the present study, those values remained 
well below the maximum recommended level of 1.27 (Ulbricht 
and Southgate, 1991).

Principal component analysis was performed to identify the 
relationships between treatment groups (duration of feeding a CLA-
containing diet to fish) and improvements observed concerning 
the fatty acid profile and nutritional quality of fish. Based on the 
results, the data were clustered in two different groups, from which 
35, 42, and 49 days of feeding were positively associated with 
healthier NQI indexes. This behavior can be associated with the 
biological effects of CLA on lipid metabolism, leading to positive 

changes in the fatty acid composition of the fish carcass. This 
results in a product of improved nutritional quality for human 
consumption (Kennedy et al., 2007).

Thus, it can be inferred that apart from the intrinsic characteristics 
of the species, the ability of A. altiparanae to incorporate CLA 
within a short duration of feeding is very relevant. Therefore, 
feeding a diet containing CLA to A. altiparane as a feeding 
strategy aimed to improve the CLA and DHA content of fish is 
an alternative approach to enhance daily levels of CLA and DHA 
consumed by humans.

CONCLUSIONS

Astyanax altiparanae has great potential, as it can incorporate 
high levels of conjugated linoleic acid within a short time. Feeding 
diets with 2.5% of conjugated linoleic acid to A. altiparanae for 35 
days improves the fish fatty acid profile, providing a commercial 
product with good nutritional quality and functional benefits.
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