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ABSTRACT
The Amazon is one of the regions with the greatest fish diversity on the planet. In this vast biodiversity, there is 
Serrasalmus rhombeus, a predatory species that plays a vital ecological role in aquatic ecosystems. In order to 
generate biological data and valuable information to management efforts, we characterized the somatic growth 
pattern of S. rhombeus and identified its sources of variation. To achieve this, individuals of S. rhombeus were 
collected from two dams between October 2018 and November 2019. Analyzing the marginal increment based 
on data from 158 individuals revealed the formation of a single annual growth ring at the onset of the rainy 
season. Individual ages ranged from 1 to 6 years old. Among the considered models, the one that provided the best 
explanation for the variation in somatic growth of S. rhombeus integrated individual variation, sex, and sites. This 
highlights that the rate of an individual’s growth and the size it can attain are influenced by individual resource 
utilization, which is mediated by interindividual genetic diversity. Furthermore, this variation is associated with 
sex and the specific site where the individual is located.

Keywords: Amazon River Basin; Interindividual variation; Otolith; Piranha; Small hydroelectric plants.

A influência da variação individual, sexo e espaço no crescimento somático de 
Serrasalmus rhombeus, uma espécie de peixe predador da Amazônia

RESUMO
A Amazônia é uma das regiões com a maior diversidade de peixes do planeta. Nessa vasta biodiversidade, encontra-
se Serrasalmus rhombeus, uma espécie predadora que desempenha um papel ecológico vital nos ecossistemas 
aquáticos. Com o objetivo de gerar dados biológicos e informações valiosas para os esforços de manejo, 
caracterizamos o padrão de crescimento somático de S. rhombeus e identificamos suas fontes de variação. Para 
isso, indivíduos de S. rhombeus foram coletados em duas represas entre outubro de 2018 e novembro de 2019. 
A análise do incremento marginal, baseada em dados de 158 indivíduos, revelou a formação de um único anel de 
crescimento anual no início da estação chuvosa. As idades individuais variaram de 1 a 6 anos. Entre os modelos 
considerados, aquele que melhor explicou a variação no crescimento somático de S. rhombeus integrou a variação 
individual, o sexo e os locais de coleta. Isso destaca que a taxa de crescimento de um indivíduo e o tamanho que 
ele pode atingir são influenciados pelo uso individual de recursos, que é mediado pela diversidade genética entre 
os indivíduos. Além disso, essa variação está associada ao sexo e ao local específico onde o indivíduo se encontra.

Palavras-chave: Bacia do Rio Amazonas; Otólito; Pequenas centrais hidrelétricas; Piranha; Variação interindividual.
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The influence of the individual variation, sex and spatial factor in somatic growth of Serrasalmus rhombeus, an Amazon predator fish species

INTRODUCTION
Somatic growth is one of the most important biological 

processes for fisheries management and management of 
commercially exploited species (McDougall et al., 2018). 
Somatic growth is defined as the quantitative expression of 
development that implies an increase in body size, in the form 
of physical dimensions or chemical constituents, as a function of 
the individual’s lifespan (Goldman, 2005).

Body size has striking effects on the survival, reproduction 
and movement of fish, shaping individual fitness, making 
growth a fundamental process in ecological and evolutionary 
dynamics (Vincenzi et al., 2014; Nater et al., 2018). Variations 
in somatic growth occur due to intrinsic and extrinsic differences 
of each individual. Thus, genetic and environmental factors 
(temperature, latitude, geographical distribution) and ecological 
interactions (competition, predation) act as determinants in 
growth rate (Winemiller, 1989; Shelton et al., 2013; Vincenzi 
et al., 2014; McDougall et al., 2018; Hansen et al., 2023).

Given this, studies on the growth of fishes have attempted to 
understand the factors that affect the growth of a species, as well 
as the importance of incorporating this information in studies on 
the population dynamics of those species (Shelton et al., 2013; 
Estlander et al., 2016; De Santana & Minte-Vera, 2017; Lourenço 
et al., 2017; Vastano et al., 2017; Nater et al., 2018; Tondato et al., 
2018; Albuquerque et al., 2019; Maciel et al., 2019; Correa 
et al., 2020; Hernández et al., 2020; Tesfaye et al., 2023), since 
ignoring the variations that can occur in somatic growth throughout 
the life cycle of the organism can lead to incorrect estimates.

Throughout their lives, fish periodically deposit growth marks 
on calcified structures such as scales, vertebrae, and otoliths. 
Among these structures, otoliths are considered the most suitable 
for analysis of growth marks due to their lack of resorption, 
since, once the absorbed minerals are deposited in the otoliths, 
the organism will not use them again, even in conditions of 
extreme hunger (Campana & Thorrold, 2001; Green et al., 2009). 
Otolith development occurs by incremental increase, that is, 
through the production of alternating concentric bands of 
mineral-deficient zones (less dense/translucent) and mineral-rich 
zones (denser/opaque), forming a permanent record of fish life 
history events such as hatching, growth, spawning period, and 
migration (Campana, 2004; Panfili et al., 2009).

Biological, physiological, biochemical, genetic, 
environmental, geographical, and historical information is 
recorded through of deposition of increments into otoliths 
(Green et al., 2009). They are closely correlated with somatic 
growth (Vincenzi et al., 2014). Therefore, ontogenetic factors, 

genetic variability, sexual dimorphism, seasonal and spatial 
variation in environmental conditions, population density and 
resource availability (Dieterman et al., 2012; Siangas et al., 
2012; DeAngelis & Grimm, 2014; Vincenzi et al., 2014; 
Cunha-Neto et al., 2022; Avigliano et al., 2023; Santana et al., 
2023; Tesfaye et al., 2023) influence the rate of somatic growth 
and, in turn, the deposition of increments into otoliths.

Knowledge of the age structures and somatic growth 
parameters of a population are necessary information 
for ecological studies of population dynamics, fisheries 
management, and stock assessment (De Santana & Minte-Vera, 
2017). Amazonian fish species exhibit a diversity of life stories 
that need greater understanding so that conservation strategies 
can be developed. Attentive to these demands, researchers have 
used growth rings in calcified structures to build biological 
and ecological knowledge about fish in the Amazon region 
(Arantes et al., 2010; Pouilly et al., 2014; Campos et al., 2015; 
Garcez et al., 2015; Duponchelle et al., 2016; Hermann et al., 
2016; Sousa et al., 2016; Hauser et al., 2018; 2019a; 2019b; 
Waddell et al., 2019; Mereles et al., 2020; Hermann et al., 2021; 
Reis-Santos, et al., 2023).

Currently, studies addressing somatic growth in fish 
have used growth models based on individuals (Nater et al., 
2018; Filipe & Kyriazakis, 2019; Morat et al., 2020; Vincenzi 
et al., 2020). This modeling considers the growth trajectory 
of everyone in the population and shows growth patterns at 
the population level originating in processes at the individual 
level (Grimm & Railsback, 2005; DeAngelis & Grimm, 
2014; Lourenço et al., 2017). By doing so, individual growth 
perspectives provide adequate data for future implementation of 
population dynamics models and effective actions for planning 
and management of fish stocks, even for species with limited 
available data (Vigliola & Meekan, 2009; Alós et al., 2010).

In recent years, the rivers of the Amazon Basin have suffered 
major anthropogenic impacts. Amongst the main threats to 
aquatic biodiversity, there are hydroelectric projects due to the 
interruption of their longitudinal connectivity of water bodies 
(Castello & Macedo, 2016; Lees et al., 2016; Winemiller et al., 
2016; Castello, 2021). Although the Amazon Basin rivers 
host 2,406 species of fish, making that one of the most diverse 
ichthyofaunas in the world (Jézéquel et al., 2020), the amount 
of biological and population data on the fishes of this ecosystem 
is still small compared to its diversity. Amongst the Amazon 
species, Serrasalmus rhombeus (Linnaeus, 1766) can be found 
in the main Amazon basins (Reis et al., 2003). S. rhombeus 
(black piranha) is a medium-sized species, reaching up to 
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50 cm in length, sedentary, omnivorous (Oliveira et al., 2023) 
and performs parental care.

Because of its predatory behavior, S. rhombeus plays a 
crucial ecological role for the equilibrium of Amazonian aquatic 
ecosystems by regulating the abundance of other species of fish 
(Goulding, 1981). In addition, this species has been one of the 
most successful in dams in the Amazon (Santos et al., 2006; 
Reis et al., 2020). In this context, this work aimed to characterize 
the pattern of somatic growth, build individual growth trajectories 
and evaluate the sources of variation in somatic growth for 
S. rhombeus in dams.

MATERIAL AND METHODS

Sample collection
Serrasalmus rhombeus individuals were collected in two 

dams located in the Branco River, one of the main tributaries 
on the right bank of the Guaporé River, Madeira River Basin, 
Amazonas, Brazil (Fig. 1). Approximately 390 km long, 
its hydrological regime is typical of the Amazon region, 
with periods of high and low water according to the rainfall 
regime (Fernandes et al., 2021). The climate of the region is 
monsoon (Am), with annual precipitation ranging from 1,800 
to 2,300 mm, and annual average temperature between 22 and 
26°C (Alvares et al., 2014), with the dry season between May 
and October and the rainy season from November to April 

(Butt et al., 2011). Due to the existence of waterfalls and rapids, 
the Branco River is highly targeted by hydroelectric projects, 
which resulted in the construction of seven small hydroelectric 
plants (SHPs) in its drainage basin. Among them, there are 
the SHP Ângelo Cassol (11°56’6,73”S, 62°04’40,35”W) with 
a reservoir of 2,73 km2 and water residence time of 4.3 days, 
in operation since 2011 (nine years), and SHP Cachimbo Alto 
(11°55’0.78”S, 62°07’11.17”W), in operation since 2017 
(three years), with a reservoir with 2.85 km2 of flooded area and 
water residence time of five days (Reis et al., 2020) (Fig. 1).

The individuals were collected in the months of April, 
October, November and December of 2018, and February, 
March, April, June, October and November of 2019 through 
experimental fishing, using fishing tackle such as spinning reel 
baited with ox heart, lures, trawls and throw nets. All individuals 
were measured for standard length (LS in cm) and weight 
(W in grams), and their sex was identified.

Otolith analysis
The Lapillus otoliths were extracted, washed in water, dried, 

and identified. Subsequently, the right otolith of each specimen 
was cast in epoxy 2001 acrylic resin in a ratio of 1:0.5. The 
blocks were cut crosswise in Isomet saw, sanded and polished 
with waterproof sandpaper (600 grit) and aluminum oxide 
powder until the core and increments were visible. Subsequently, 
each otolith was fixed on slide for microscopic examination.

Figure 1. Study area where Serrasalmus rhombeus individuals were sampled, in the Branco River Basin, Rondônia, Brazil.
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The slides containing the otoliths were soaked in 70% alcohol 
(to better highlight the opaque and translucent zones) and 
photographed in stereoscope with a Carl Zeiss-Axioncam IC-Zen Lite 
Blue 2012/SP2 camera using 1.0 × lens and 2.5 × magnification under 
inverted light in order to make the opaque areas appear dark and the 
translucent areas bright (Secor et al., 1992; Green et al., 2009).

Two independent readings were performed by the same 
reader. For each otolith, the distance between the nucleus to the 
end (edge) of the otolith and the distance between the nucleus 
to the end of each opaque zone, which represents the radius of 
each growth ring, were measured using the AxioVision 4.8.2.0 
software. The coefficient of variation (CV) was used to estimate 
accuracy between the two readings of each otolith through Eq. 1:

                      (1)

Where: CVj: accuracy of the age estimate for the j-th fish; 
Xij: determination of the age of the j-th fish; Xj: estimate of the 
average age of the j-th fish; R: number of age readings of each 
fish (Campana, 2001).

Periodicity of deposition of increments
The validation of the increment deposition periodicity was 

performed using data from the 3-year-old individuals collected 
between November 2018 and October 2019. To evaluate the 
periodicity of deposition of the increment, the absolute marginal 
increment analysis (MIA) was obtained by Eq. 2:

                                  (2)

Where: Rn: distance between otolith nucleus and penultimate 
band; Rn -1: distance between the nucleus of the otolith and the 
last band (Campana, 2001).

To verify whether there was a relationship between the 
periodicity of the deposition of the increments and rainfall, 
information on the monthly rainfall in the region and the monthly 
averages of marginal increment of the 3-year-old individuals was 
used to build a graph. In this graph, the lowest marginal increment 
averages indicate the moment when a growth ring is formed.

Individual growth trajectories
The individual growth trajectories were built using the back-

calculation method, which aims to recalculate the body length 
of the fishes at ages prior to capture, as it is assumed that there 
is a relationship between otolith growth (increment width) and 
somatic growth (body length) of fish (Vigliola & Meekan, 2009). 

The analysis of the relationship between body length and otolith 
radius showed a linear relationship, so the linear biological 
interception back-calculation model was used in Eq. 3:

               (3)

Where: Ri and Li: radius and body size at agei; Rcpt and Lcpt: 
body radius and length when collected; Rop and Lop: otolith 
radius and initial body length (usually at age 0) (Campana, 1990; 
Lourenço et al., 2017).

This model is applied when the relationship between body 
length and otolith radius of fish is linear. As no information was 
found in the literature about the average value of the otolith radius of 
S. rhombeus larvae, we assumed that the Lop was 20 mm and Rop was 
0.008 mm, because these were the values that best estimated lengths 
prior to capture close to the values of lengths observed upon capture.

Somatic growth model
The somatic growth parameters of S. rhombeus were 

estimated using the von Bertalanffy nonlinear equation. This 
equation determines the relation of the individual’s body size, 
obtained through the absorption of nutrients, as a function of 
time (age) (Eq. 4):

                          (4)

Where: Lt: length of individuals aged t; L∞: average of 
the maximum asymptotic or theoretical maximum length that 
the fish can reach (mm); k (year-1): constant of the individual 
growth rate that determines the curvature of the growth function 
and represents processes related to energy costs (catabolism, 
metabolic rates, and associated behavioral characteristics); t 
(year): age of individuals; t0 (year): nominal age of the fish in 
which its length is 0, the point that shifts the curve to the right 
or left of the age axis (Lai et al., 1996; Sparre & Venema, 1997).

Based on the growth parameters obtained by the von 
Bertalanffy adjustment, longevity was calculated (A0,95) (Taylor, 
1960), representing the time needed for an organism to reach 
95% of its growth capacity in length. The Eq. 5 was used:

                                  (5)

Where: t0: nominal age of the fish at which its length is 0; k: 
constant of the individual growth rate. 

These parameters were estimated using the von Bertalanffy 
model.
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Estimates of growth parameters and comparison 
of models

The growth parameters of S. rhombeus were estimated using 
the maximum likelihood method. Four models were built using 
the general Eq. 6:

                                (6)

Where: Yi: recalculated length of the individual at age X; εi: 
the measurement level error or residual error that demonstrates the 
deviations of the back-calculated length Yi length at age determined 
through the estimated growth curve Y (X) of each individual. 

To assess the effect of individual, site, and sex on somatic 
growth of S. rhombeus, three models were built using nonlinear 
models mixed with the “nlme” function of the nlme package 
(Pinheiro & Bates, 2000).

The model 1 used random effect of the individual as a 
variance component, showed in Eq. 7:

                  Model 1 =  (7)

Where: lkp: parameter value lk for individual p; lk0: base value 
common to all individuals; ikp: random effect at individual level;  
εi: residual error.

The Model 2 used random effect of the individual and fixed 
effect of the site, expressed in Eq. 8:

              Model 2 =  (8)

Where: lkp: parameter value lk for individual p; lk0: base value 
common to all individuals; ikp: random effect at individual level;  
lkp: fixed effect based on site; εi: residual error.

The Model 3 used random effect of individual and fixed 
effect of sex, expressed in Eq. 9:

             Model 3 =  (9)

Where: lkp: parameter value lk for individual p; lk0: base value 
common to all individuals; ikp: random effect at individual level;  
skp: fixed effect based on sex; εi: residual error.

The Model 4 used random effect of individual and fixed 
effect of site and sex, as expressed in Eq. 10:

         Model 4 =  (10)

Where: lkp: parameter value lk for individual p; lk0: base value 
common to all individuals; ikp: random effect at individual level;  
lkp: fixed effect based on site; skp: fixed effect based on sex; εi: 
residual error.

To compare the four models, the Akaike information criterion 
(AIC) was used. The lower values indicate the models which 
best fit the data on length at age (Wagner et al., 2007). In addition 
to the AIC, to evaluate the differences between the models, we 
also considered the values of Δi (Δi < 2: strong support in the 
data; Δi > = 2 and < 7: little support in the data; Δi > 10: no 
support in the data) which allows the acceptability of each model 
to be analyzed numerically, and the weight (Wi), which refers 
to the probability of a given model, in cases of data resampling 
(Burnham & Anderson, 2002). All the analyses were performed 
using the R program (R Core Team, 2020).

RESULTS
A total of 202 S. rhombeus was captured, of which 39 

were discarded due to problems in the processing of otoliths. 
Individuals with up to nine growth rings were sampled, but 
fish aged between 7 and 9 years old were excluded from 
the analysis, due to the low number of specimens at these 
ages (five individuals), resulting in a database with 158 
individuals. Standard length ranged from 121 to 255 mm in 
females (mean ± standard deviation – SD: 175.42 ± 29.04 mm) 
and from 125 to 230 mm (mean ± SD: 175.42 ± 29.04 mm) 
in males (Table 1).

Table 1. Individual number (N), age, range of length standard (range LS), mean of length standard (mean LS) and standard deviation 
(SD) for female and male of Serrasalmus rhombeus in Ângelo Cassol and Cachimbo Alto dams, Rondônia, Brazil.

Sites Sex N Age (years old) Range LS (mm) Mean LS (mm) SD

Grouped individuals
Females 76 1–6 121.0–255.0 186.06 30.73
Males 82 1–6 125.0–230.0 175.42 29.04

Ângelo Cassol
Females 30 1–6 134.0–235.0 180.50 31.77
Males 44 1–6 133.0–230.0 177.79 27.14

Cachimbo Alto
Females 46 1–6 121.0–255.0 189.70 29.82
Males 38 1–6 125.0–287.0 172.68 31.24
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Based on the number of rings, individuals aged from 1 to 
6 years old were identified. Females showed greater variation in 
body length by age than males, in addition to reaching greater 
body length at a younger age. When the data were analyzed 
separately by site and sex, the mean length at age was also higher 
for females, regardless of the sample site (Fernandes, 2025).

Periodicity and deposition of growth increments
The lowest absolute MIA values were found between 

November (mean ± SD: 0.862 ± 0.02 mm) and December 
(mean ± SD: 0.856 ± 0.036 mm) of 2018 (Fig. 2). Thus, the 
marginal increment of S. rhombeus decreases at the end of 
the dry season and the start of the rainy season. Given these 
results, S. rhombeus forms one ring per year with marking at the 
start of the rainy season.

Table 2. Comparison of body length at catch with body length 
back-calculated by age group for Serrasalmus rhombeus sampled 
at Ângelo Cassol and Cachimbo Alto small hydroelectric plant 
dams, Rondônia, Brazil.

Age
(years old)

Catch length
Backcalculation 

length
Females Males Females Males

1 143.57 138.50 135.12 132.54
2 154.92 160.25 140.49 142.17
3 186.58 176.60 164.39 156.46
4 196.94 183.11 169.30 157.98
5 210.50 209.63 178.01 176.36
6 227.25 226.00 193.55 193.78

Table 3. Results of model selection for somatic growth of 
Serrasalmus rhombeus based on a Akaike information criterion 
(AIC) comparison of four models.

Rank Model AIC Δi Wi k
Model 1 Individual 3,707.0 4.9 0.065 5
Model 2 Individual + site 3,709.6 7.4 0.018 8
Model 3 Individual + sex 3,705.1 2.9 0.175 8
Model 4 Individual + sex + site 3,702.2 0.0 0.741 11

Δi: acceptability of each model; Wi: plausibility of each model; k: number of 
parameters of the nonlinear regression model.

the model that best explains the variation in growth for the 
species, followed by Models 3, 1 and 2 (Fernandes (2025); 
Table 3). Given these results, individual characteristics, site 
and sex are the main sources of variation for the growth 
of S. rhombeus.

Figure 2. Mean and standard deviation of the absolute marginal 
increment analysis of the otolith (circles) and rainfall (triangles) 
of Serrasalmus rhombeus in the period from September 2018 to 
November 2019 in the Ângelo Cassol and Cachimbo Alto small 
hydroelectric plant dams, Rondônia, Brazil.

Figure 3. Relationship between body length and radius of 
Serrasalmus rhombeus Lapillus otolith sampled at the Ângelo 
Cassol and Cachimbo Alto small hydroelectric plant dams, 
Rondônia, Brazil.

Individual growth trajectories
Length regression of Lapillus otoliths regarding the body 

length of S. rhombeus was linear and significant (r2 = 0.64, 
p < 0.002) (Fig. 3). Since the relationship was linear, we applied 
the linear biological interception method to recalculate body 
length at the ages prior to collection and then compare the 
mean lengths at the age of collection of each sex with the back-
calculated mean lengths by age group (Table 2).

Estimates of growth parameters and comparison 
of models

Among the four models tested, Model 4, which considers the 
individual effect, site and sex combined, was the best fit for 
the data on length at age according to the AIC and, therefore, 
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Table 4. Estimates of growth parameters (L∞, k t0), confidence intervals (CI) and longevity A0,95 (years old) for Serrasalmus rhombeus 
individual, site and sex model based on Model 4.

Parameters
Ângelo Cassol SHP

Females Males
Estimate 95%CI Estimate 95%CI

L∞ (mm) 215.26 201.21–229.32 213.24 184.94–241.55
k (year-1) 0.32 0.24–0.39 0.28 0.16–0.39
t0 (year-1) -2.32 -2.82–-1.81 -2.84 -3.82–-1.85

A0,95 (years old) 7.04 7.86

Parameters
Cachimbo Alto SHP

Females Males
Estimate 95%CI Estimate 95%CI

L∞(mm) 238.01 220.36–255.66 235.99 204.09–243.44
k (year-1) 0.22 0.16–0.28 0.18 0.08–0.28
t0 (year-1) -3.08 -3.70–-2.46 -3.60 -4.70–-2.50

A0,95 (years old) 10.54 13.04
SHP: small hydroelectric plant; 95%CI: 95% confidence interval.

Model 4, which considered the effect of individual, site and 
sex variation on growth parameters, presented the best fit for the 
data on length at age. The values of the parameters estimated 

by this model are presented in Table 4. In addition, growth 
trajectories were constructed for everyone at the Ângelo Cassol 
and Cachimbo Alto SHP dams (Fig. 4).

Figure 4. Individual growth trajectories of Serrasalmus rhombeus caught at the Ângelo Cassol and Cachimbo Alto small hydroelectric 
plants, Rondônia, Brazil.
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DISCUSSION
The Lapillus otoliths of S. rhombeus have good visibility and 

periodicity of growth marks, so they can be considered suitable 
for ring counting and used for age estimates. We also found that, 
when combined, the individual, site and sex factors are sources 
of variation in growth for S. rhombeus in dams.

Determining age based on the reading of the growth rings of 
six years old for S. rhombeus was similar to what was found for 
the red piranha (Pygocentrus nattereri) (Serrasalmidae) in rivers 
of Bolivian Amazon (Duponchelle et al., 2007). The longevity 
estimate (A0.95) varied from 7 to 13 years old for S. rhombeus. 
It was higher than estimates already recorded for other species 
of the same genus (Sousa et al., 2013; Sá-Oliveira et al., 2015; 
Vicentin et al., 2018).

MIA showed an annual pattern in the formation of growth 
rings for S. rhombeus, as it was found for other Neotropical 
fish species such as Pseudoplatystoma corruscans (Mateus & 
Petrere Júnior, 2004), Pygocentrus nattereri (Duponchelle et al., 
2007, 2012), Piaractus mesopotamicus (Ambrosio et al., 2014; 
Lourenço et al., 2017), Cichla temensis (Campos et al., 2015), 
and Prochilodus lineatus (De Santana & Minte-Vera, 2017; 
Santana et al., 2018; Haimovici et al., 2022). The formation 
of growth marks at the end of the dry season and the start of 
rainy season (between November and December) was similar to 
that found for Pygocentrus nattereri, in rivers of the Bolivian 
Amazon (Duponchelle et al., 2007).

Seasonal markings on calcified structures are usually 
associated with life strategies of species, environmental 
changes, and availability of food resources (Nóbrega & 
Lessa, 2009; Tesfaye et al., 2023). Our results confirmed the 
relationship between the seasonal hydrological cycle, typical 
of tropical aquatic ecosystems, and changes in the growth rate 
of Amazonian fishes (Pérez & Fabré, 2009; Grønkjaer, 2016; 
Costa et al., 2018; Hauser et al., 2018; Haimovici et al., 2022), 
since the monthly averages of marginal increments were 
constant throughout the year, except in the transition period 
between the dry and rainy seasons and when the dams reached 
their lowest levels and water volume.

The seasonal variation of rainfall has a strong influence on 
the diet of Neotropical fishes, since during the rainy season 
and rising water levels of rivers large plain areas are flooded. 
These temporarily flooded environments provide a large supply 
of energy to the system due to their large amount of plant 
(leaves, fruits and seeds) and animal (insects) resources, 
resulting in greater availability and quality of food resources, 
while in the dry season the availability of resources decreases 

(Walker et al., 2013; Sanferla & Súarez, 2016). Thus, seasonal 
change in resource availability and, consequently, in fish growth 
results in different patterns of deposition of otolith growth 
increments, as these structures are formed through the absorption 
of nutrients from food and the environment (Campana, 2001, 
2004; Dieterman et al., 2012).

Although S. rhombeus is a predatory species with an 
omnivorous diet, restriction of resources during the low water 
period can increase (intra and interspecific) competition, which 
may result in increased expenditure of energy for the acquisition 
of food resources. Therefore, the rainy season is likely to represent 
a period of more favorable trophic conditions for this species, 
which leads to an increase in somatic growth, while the drought 
period implies less favorable conditions and a lower growth rate.

Individual, site, and sex characteristics are the main sources 
of variation in growth for S. rhombeus. Individual heterogeneity 
may be linked to genetic factors and the phenotypic plasticity 
of each individual. Genetic differences between individuals 
are a determining factor in the heterogeneity of growth since 
some individuals may be genetically predisposed to grow faster 
than other individuals in the same population. In addition to 
genetic differences in growth performance, even individuals 
being exposed to the same biotic and abiotic factors, access 
to resources occurs individually. Therefore, the growth of 
individuals does not behave homogeneously in a population 
(Lourenço et al., 2017; Nater et al., 2018; Haimovici et al., 2022). 
In addition, individuals react differently to external stimuli 
because of innate differences in growth potential arising from 
variation in metabolic rates and behavioral traits (Nater et al., 
2018; Filipe & Kyriazakis, 2019).

Morphological differences between males and females are a 
very common feature in fish (Araujo-Lima & Goulding, 1997; 
Kritzer, 2004; Duponchelle et al., 2007; Rypel, 2007; Nóbrega 
& Lessa, 2009; Estlander et al., 2016; Lourenço et al., 2017; 
Hauser et al.,2018; Maciel et al., 2019). Differences in body size 
between males and females may be related to genetic factors, 
balance in energy allocation between reproductive and growth 
activities, vulnerability to predators, parental care (Rypel, 2007; 
Maciel et al., 2019) and changes in the environment due to 
different responses between females and males to exogenous 
factors (Estlander et al., 2016). Another factor that may be 
related to the difference in growth, which normally favors 
females, may be associated with reproductive activity, because 
gonadal maturation requires greater internal volume and energy 
expenditure for females in egg production and spawning than for 
males (Duponchelle et al., 2007; Lourenço et al., 2017).

https://creativecommons.org/licenses/by/4.0/deed.en
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Different environments, such as different dams, may differ 
in environmental conditions and resource availability, as well as 
ecological factors such as competition, predation, density and 
recruitment, and may influence the growth rates of individuals 
(Duponchelle et al., 2007; Estlander et al., 2016; Izzo et al., 
2017; Vastano et al., 2017; Hauser et al., 2018; McDougall 
et al., 2018; Maciel et al., 2019; Hernández et al., 2020). The two 
dams analyzed in this study can be considered young. SHP Ângelo 
Cassol has been in operation for nine years, and SHP Cachimbo 
Alto for only three (Reis et al., 2020). Young dams have a large 
supply of organic matter, consequently high primary productivity 
in the first years of formation. However, such productivity tends to 
decrease as time passes (Mol et al., 2007; Agostinho et al., 2016). 
Such conditions can benefit opportunistic sedentary species 
adapted to lentic environments (Agostinho et al., 2008; Muniz 
et al., 2019; Reis et al., 2020) as S. rhombeus, one of the most 
successful species in dams in the Amazon.

Therefore, our study showed that incorporating the effect 
of individual variability, sex, and site into growth parameters 
provides more accurate data and contributes to a better 
understanding of the possible sources of variations in fish 
growth. Furthermore, individual-based models have shown that 
most species exhibit inter-individual variation in resource use 
(Araújo et al., 2011; DeAngelis & Grimm, 2014; Vincenzi et al., 
2014; Lewis et al., 2021), and here we demonstrated this effect 
on the growth of S. rhombeus in dams.

CONCLUSION
Serrasalmus rhombeus forms a single annual ring, and the 

marking occurs between the months of November and December, 
at the end of the dry season and the start of the rainy season, 
and when the dams reach their lowest levels. Individuals up to 
6 years old were recorded, and the estimated longevity ranged 
from 7 to 13. Among the evaluated factors, individual variation, 
site, and sex are important sources of variation working together 
in the growth of S. rhombeus in dams.

Therefore, the management of native species, whether they 
are important for fishing or species of key ecological importance, 
such as S. rhombeus, ought to consider the interindividual 
variation between sex and between the different environments 
where these species are being managed. Using the same 
management strategies for cosmopolitan species occurring in 
different drainage basins can lead to failure, since the response 
to local characteristics is individual and varies with sex.

Given the ecological importance that S. rhombeus can 
exercise in the balance of ecosystems, incorporating knowledge 

about the sources of variation in the growth of the species can 
contribute to this species management on the aquatic community, 
especially in altered environments, such as dams.
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