A QUANTITATIVE APPROACH TO SUBSIDIZE THE PRECAUTIONARY MANAGEMENT OF THE SMALL-SCALE FISHERIES IN ITAIPU RESERVOIR, BRAZIL

Serguei Aily Franco de CAMARGO 1; Edson Kiyoshi OKADA 2; Miguel PETRERE Jr 3

ABSTRACT

Professional inland fisheries are an important economic activity in the region of Itaipu reservoir. The dam was closed in 1982, and in 1998, 619 professional fishermen landed 1192t of fish, composing 10 commercial species. In the 1990s there were 509 fishermen month on average working in the reservoir. This number falls to approximately 365 fishermen month-1 between 2000 and 2002 as a consequence of the fishing ban. The reservoir consists of 12 fishing areas, distributed in 3 zones: fluvial (influenced by Paraná River), transition (influenced by the tributaries) and lacustrine (near the dam). There were differences in fishermen densities in these zones: 42% work in the lacustrine, 41% in the fluvial and 17% in the transition. The main fishing gears employed is nets and hooks. The Itaipu royalties' payment to the municipalities in the region may possibly incentive the reduction of the level of professional fisheries. Between 1991 and 2001, it has been observed that there is a strong negative relation between the amount of royalties paid and the level of fishing effort. In this context, it was proposed a preliminary bio-mathematical model to subsidize the formulation of guidelines, based on the statements of precautionary management, as the predominant orientation in the literature. It was elaborated a model via the software Vensim PLE to describe and predicting small-scale fisheries consequences upon the reservoir fish stock, and it was tested the relation between the decrease of fishing effort and Itaipu royalties' payment to the municipalities via a regression model.

APROXIMAÇÃO QUANTITATIVA PARA SUBSIDIAR O MANEJO PRECAUCIONÁRIO DAS PESCARIAS EM PEQUENA ESCALA NO RESERVATÓRIO DE ITAIPU, BRASIL

RESUMO

A pesca profissional é uma importante atividade econômica na região do reservatório de Itaipu. A barragem foi fechada em 1982, e em 1998, 619 pescadores profissionais desembarcaram 1192t de pescado, composto por 10 espécies. Em 1990 havia 509 pescadores mês⁻¹ em média trabalhando no reservatório. Este número caiu para aproximadamente 365 pescadores mês⁻¹ entre 2000 e 2002 como conseqüência da proibição da pesca. O reservatório é composto por 12 áreas de pesca, distribuídas em 3 zonas: fluvial (influenciada pelo rio Paraná), transição (influenciada pelos tributários) e lacustrina (próxima da barragem). Há diferenças nas densidades de pescadores no reservatório, com 42% operando na zona lacustrina, 41% na zona fluvial e 17% na zona de transição. Os principais aparelhos utilizados são redes e anzóis. O pagamento dos royalties de Itaipu para os municípios da região do reservatório possivelmente incentiva a redução das pescarias profissionais. Entre 1991 e 2001, foi observado que há uma forte e negativa relação entre o montante de royalties repassados para as Prefeituras e o nível de esforço pesqueiro. Assim, foi proposto um modelo bio-matemático preliminar para subsidiar a formulação de orientações setoriais, baseadas nos princípios do manejo precaucionário, conforme a orientação predominante na literatura. Elaborou-se também um modelo

Nota Científica: Recebida em: 14/08/2006; Aprovada em: 09/10/2007

¹ Professor e pesquisador da Universidade do Estado do Amazonas - Programa de PG em Direito Ambiental Rua Leonardo Malcher, 1.728, 5°. Andar, Praça 14 − 69020-070 − Manaus (AM) - e-mail: safc@uea.edu.br

² Pesquisador da UEM - NUPELIA - e-mail: edsonoko@nupelia.uem.br

³ Professor e pesquisador da UNESP – Departamento de Ecologia - e-mail: mpetrere@rc.unesp.br

através do software Vensim PLE para descrever e prever as conseqüências da pesca profissional sobre o estoque, e testou-se a relação entre o decréscimo do esforço pesqueiro e o pagamento de royalties de Itaipu para as Prefeituras da região através de um modelo de regressão.

Palavras-Chave: Manejo Precaucionário; Pesca Interior; Reservatório de Itaipu

INTRODUCTION

Professional inland fisheries are an important economic activity in the region of Itaipu reservoir (135000 ha of inundated area, 12600 MW of nominal generation power), located on the Paraná River at the Brazil/Paraguay border (Paraná River is 4695 km long; Paraná/La Plata basin has a drainage area of 2800000 km²). The dam was closed in 1982, and before this landing data were scarce. In 1985 it an agreement was set between the UEM (Universidade Estadual de Maringá) and ITAIPUBINACIONAL (the Brazilian/Paraguayan Agency that operates the dam) to collect landing data (FUEM, 2002). In 1998, 619 professional fishermen landed 1192t of fish, of 10 commercial species, captured by nets and hooks (PETRERE *et al.* 2002).

Due to legal exigencies, after the dam closure, Itaipu was obligated to the royalties' payment to the municipalities in the region of the reservoir. In practice, between 1991 and 2001, it was observed a strong negative relation between the amounts of royalties transferred to the municipalities and the fishing effort (of professional fisheries). Hypothetically, a fall in the fishing effort can occurred due to the increase of employment level of the population of these municipalities in other sectors of economy affected by the royalties (for example: agriculture and commerce).

In this context, the aim of this paper is to propose a preliminary bio-mathematical model to subsidize the formulation of guidelines, based on the statements of precautionary management, as the predominant orientation in the juridical literature. Specifically, it is intended to elaborate a model via the software Vensim PLE (VENSIM, 2005) to describe and predicting small-scale fisheries consequences upon the reservoir fish stock, and to test the relation between the decrease of fishing effort and Itaipu royalties' payment to the municipalities in the region of the reservoir via a regression model.

METHODS

1. Scenario

According to OKADA et al. (2005) the reservoir

consists of 12 fishing areas, distributed in 3 zones: fluvial (influenced by Paraná River), transition (influenced by the tributaries) and lacustrine (near the dam). The main fishing gears employed is nets and hooks. It is important to stress that the Paraguayan side was not considered in the model, due to the lack of information. An annual fishing ban during the reproduction period was started in 2000 continuing annually from November to February.

In the 1990 there were 509 fishermen month⁻¹ on average working in the reservoir. This number fell to approximately 365 fishermen month⁻¹ between 2000 and 2002, as a consequence of the fishing ban. There were also differences in fishermen densities in the zones of the reservoir. The lacustrine zone concentrates 42% of the fishermen, the fluvial zone 41% and the transition zone, 17% (FUEM, 2002). It is important to point out that the density of fishermen in the reservoir declined in the subsequent years, possibly due to the low fishery economic income (AGOSTINHO *et al.*, 1999).

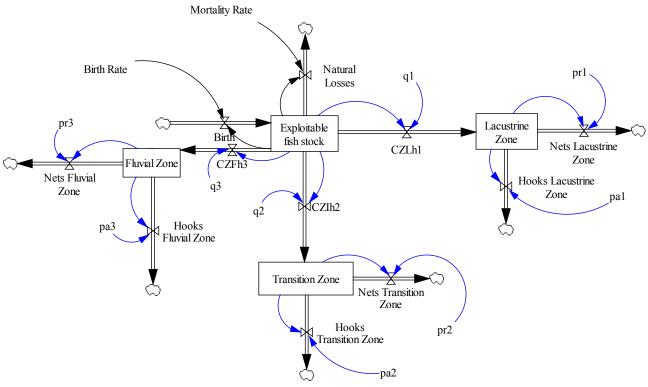
2. The models

2.1. Fishery model

Figure 1 presents the flowchart of the proposed model to describe the fisheries in Itaipu reservoir. The baseline conditions of the model were established according FUEM (2002) for description of the scenario (Table 1).

2.2. Regression model: royalties and fishery landings

Aiming to test the influence of the royalties over the fishing effort (of professional fisheries), it was elaborated a regression model between the reservoir landings and the royalties transference to the municipalities. Equation 1 presents the model:


 $PAT = RAT + \varepsilon$

Equation 1, where:

PAT = Total annual production (landings) of the reservoir;

RAT = Amounts of annual transference of royalties.

The data used to test this model is in Table 2.

Where: pr_i (proportion of net fisheries at the zone i); pa_i (proportion of hook fisheries at the zone i); q_i (proportion of landings at the zone i); cz_i (total landings at the zone i).

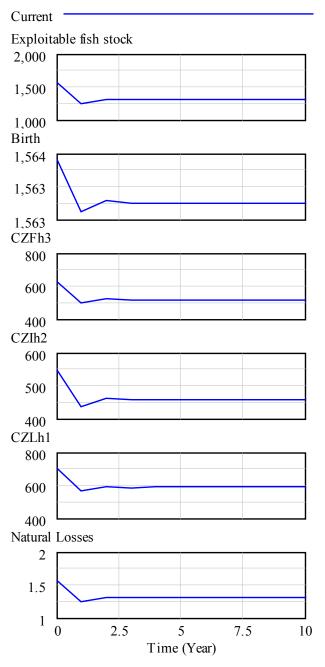
Figure 1. Flowchart of the considered model to describe the fisheries in Itaipu Reservoir

Table 1. Baseline conditions for the simulation of the model presented in Figure 1.

# Equation	ation	Units	Observations
(01)	Birth=(Exploitable fish stock*Birth Rate)+1560	Tons/YEAR	
(03)	Birth Rate=0.0025	%	
(03)	CZFh ₃ =q ₃ *Exploitable fish stock	Tons/YEAR	Landings in fluvial zone.
(04)	$CZIh_2 = Exploitable$ fish stock* q_2	Tons/YEAR	Landings in transition zone.
(02)	$\operatorname{CZLh}_1 = \operatorname{Exploitable}$ fish $\operatorname{stock}^*q_1$	Tons/YEAR	Landings lacustrine zone.
(90)	Exploitable fish stock=INTEG (Birth-CZLh ₁ -CZIh ₂ -CZFh ₃ -Natural Losses, 1560)	Tons/YEAR	Exploitable fish stock was considered as the same level of MSY (1560t).
(02)	FINAL TIME = 10	YEAR	The final time for the simulation.
(80)	Fluvial Zone=INTEG (+CZFh ₃ -Hooks Fluvial Zone-Nets Fluvial Zone, 0)	Tons/YEAR	Total landings of fluvial zone.
(60)	Hooks Fluvial Zone=Fluvial Zone*pa ₃	%	
(10)	Hooks Lacustrine Zone=Lacustrine Zone*pa ₁	%	
(11)	Hooks Transition Zone=Transition Zone*pa ₂	%	
(12)	INITIAL TIME = 0	YEAR	The initial time for the simulation.
(13)	Lacustrine Zone= INTEG (+CZLh ₁ -Hooks Lacustrine Zone-Nets Lacustrine Zone, 0)	Tons/YEAR	
(14)	Mortality Rate=0.001	%	
(15)	Natural Losses=Exploitable fish stock*Mortality Rate	Tons/YEAR	
(16)	Nets Fluvial Zone=Fluvial Zone*pr ₃	%	
(17)	Nets Lacustrine Zone=Lacustrine Zone*pr ₁	%	
(18)	Nets Transition Zone=Transition Zone*pr ₂	%	
(19)	$pa_1 = 0.3$	%	
(20)	$pa_2 = 0.3$	%	
(21)	$pa_3 = 0.3$	%	
(22)	$pr_1 = 0.7$	%	
(23)	$pr_2 = 0.7$	%	
(24)	$pr_3 = 0.7$	%	
(25)	$q_1 = 0.4512$	%	
(26)	$q_2 = 0.3504$	%	
(27)	$q_3 = 0.3984$	%	
(28)	SAVEPER = TIME STEP	YEAR	The frequency with which output is stored.
(29)	TIME STEP = 1	YEAR	The time step for the simulation.
(30)	Transition Zone=INTEG (+CZIh ₂ -Hooks Transition Zone-Nets Transition Zone, 0)	Tons/YEAR	

Table 2. Landings and royalties data.

Year	Production of the reservoir (t) - PAT	Royalties transference to municipalities of State of Paraná – RAT (US\$)
1991	1589	77 à 0
1992	1663	11215
1993	1542	7842
1994	1297	42602
1995	1373	42635
1996	1411	57571
1997	1192	71518
1998		71906
1999	1182	73493
2000	1253	75562
2001	1051	74169
2002	•	80568
2003		61840
2004		31020


RESULTS AND DISCUSSION

The result of the simulation is presented in Figure 2, considering the peculiarities of the three zones of the reservoir. The exploitable fish stock was considered at the same level of the maximum sustainable yield, estimated by OKADA et al. (1996) and FUEM (2002) as 1560t year-1. It was set as an initial value and simulated an increase of the fishing effort of 20% year, during 10 years. The results indicated that the disruption of the exploitable fish stock is immediate. The mathematical routines, allowed the insertion of economic sub-routines as shadow variables in the reservoir zones. It is important to point out that this scenario was simulated with an opposite tendency, in fact, FUEM (2002) mentions that fishing effort has been reduced from 1997 to 2001. During 2004 the total production was 632.4t, with, in average, 332 fishermen month-1 working in the reservoir (unpublished data). This scenario was developed according to the precautionary management statements (CAMARGO and PETRERE, 2004), allowing the fisheries officers to estimate different levels of fish stocks exploitation and its consequences.

According to figure 2 it is possible to conclude that the model, under the conditions described above, is stable. On the other hand, any increment on fishing effort (\geq 20%) will disrupt the exploitable fish stock in

short period. This behavior enforces the necessity to adopt precautionary actions, as stated in the Code of Conduct for Responsible Fisheries (FAO), which was validated in Brazil by the Decree 5.382/2005, aiming to promote social and environmental sustainability of the professional fisheries.

Figure 2. Result of the simulation for exploitable fish stock=1560t year¹ with 20% of increment in the fishing effort

On the other hand, it was observed that the increment of fishing effort is closely related to Itaipu

302 CAMARGO et al.

royalties' payment to the municipalities in the region of the reservoir. This relation was tested in a linear regression model. The total annual production of the reservoir from 1991 to 2001 was set as the dependent variable and the total annual amount of royalties paid to 11 municipalities of the Brazilian side (the Paraguayan margin is poorly inhabited and with three conservation units), during the same period, was set as the independent variable. The total annual production (landings) of the reservoir (Y), in average, from 1991 to 2001 was 1355.3t (n=10; minimum=1051t; maximum=1663t), and the total annual royalties payment (X), during the same period, was in average US\$4 8750.3, (n=11; minimum=US\$7740.0; maximum=US\$75562.0). This regression analysis presented a negative relationship $(Y=1648.8-0.006*X; r^2=0.838**; r_{s,yx}^2=7092.9; n = 10)$. It means that the local population prefers to work in other activities. In this case, small-scale fisheries are an alternative to unemployment in the urban zone. This fact indicates the importance of the royalties to these cities, enhancing the employment level of the population, contributing indirectly to the maintenance of the present levels of fishing effort.

CONCLUSIONS

In this moment, it is possible to present two main conclusions: i) the model supports the inclusion of complementary routines, permiting the avaliation of the effects of the fishery effort over the stocks and; ii) the royalties payment to the municipalities influences the employment level in the commerce, indirectly affecting the fishery effort in the reservoir.

ACKNOWLEDGMENTS

We thank UEA, FAPEAM for a PGCT Grant for SAFC, ITAIPUBINACIONAL, UEM/NUPELIA for the fisheries data and field support, UNESP and CNPq, for partially supporting this research.

REFERENCES

- AGOSTINHO, A. A.; OKADA, E. K.; GREGORIS, J. 1999 A Pesca no Reservatório de Itaipu: Aspectos Sócioeconômicos e Impactos do Represamento. In: R. HENRY (ed.) *Ecologia de Reservatórios: Estrutura, Função e Aspectos Sociais*. Botucatu: FUNDBIO/FAPESP. p. 280-319.
- CAMARGO, S. A. F. e PETRERE, M. 2004 Análise de risco aplicada ao manejo precaucionário das pescarias artesanais na região do Reservatório

- da UHE-Tucuruí (Pará, Brasil). *Acta Amazonica* 34(3): 473-485.
- FUEM. NUPÉLIA/ITAIPU BINACIONAL 2002 Reservatório de Itaipu: Estatística do Rendimento e Sócioeconomia da Pesca. Maringá. 344p. (Relatório Anual: 2002 – apoio Itaipu Binacional).
- OKADA, E. K.; AGOSTINHO, A. A.; PETRERE, M. 1996 Catch and effort data and the management of the commercial fisheries of Itaipu reservoir in the upper Paraná river, Brazil. In: I. G. COWX (ed.) *Stock Assessment in Inland Fisheries*. Oxford: Fishing News Books. p. 155-161.
- OKADA, E.K.; AGOSTINHO, A.A.; GOMES, L.C. 2005 Spatial and temporal gradients in artisanal fisheries: a case study of the Itaipu Reservoir, Brazil. Canadian Journal of Fisheries and Aquatic Sciences 62: 714-724
- PETRERE, M.; AGOSTINHO, A. A.; OKADA, E. K.; JÚLIO JR., H. F. 2002 Review of the fisheries in the Brazilian portion of the Paraná/Pantanal basin. In: I. G. COWX (ed) *Management and Ecology of Lake and Reservoir Fisheries*. Oxford: Fishing News Books. p. 123-143.
- VENSIM 2005 Software developed by Ventana Systems, Inc. Available from: http://www.vensum.com. Accessed in: July 29, 2005.