INDICADORES ZOOTÉCNICOS E ECONÔMICOS DA TILAPICULTURA EM TANQUES-REDE DE DIFERENTES DIMENSÕES

Alex Frederico de NOVAES¹; Gener Tadeu PEREIRA²; Maria Inez Espagnoli Geraldo MARTINS³

RESUMO

Objetivou-se, com o presente estudo, comparar os principais indicadores zootécnicos e econômicos da tilapicultura em sistema super-intensivo, desenvolvido em tanques-rede com duas diferentes dimensões: 6 e 18 m³. Foram utilizados 12.960 juvenis machos revertidos de tilápia-do-nilo (*Oreochromis niloticus*), linhagem supreme, com peso médio inicial de 32,0 g (\pm 0,85) para os tanques de 6 m³ e 88,5 g (\pm 0,96) nos tanques de 18 m³. Os peixes foram alimentados três vezes ao dia, com ração extrusada comercial, teor de proteína bruta de 40 a 32%, granulometria de 2 a 8 mm e taxa diária de alimentação iniciando com 8% do peso vivo (PV), decrescendo até 1% do PV. Concluiu-se que, embora não diferindo na maioria dos indicadores zootécnicos (P>0,05), a produção de tilápias em tanques-rede de maior dimensão proporcionou menor custo total médio e maior retorno líquido médio por kg do pescado produzido, 34,4% superior, resultando em maior rentabilidade.

Palavras chave: Tilapicultura; rentabilidade; indicadores zootécnicos

ZOOTECHNICAL AND ECONOMIC INDICATORS OF THE TILAPIA CULTURE IN NET CAGES OF DIFFERENT SIZES

ABSTRACT

The present study aimed to compare the main zootechnical and economic indicators of farming tilapia in superintensive system developed in two different net cages dimensions: 6 and 18 m³. Were used 12,960 juveniles male reversed Nile tilapia (*Oreochromis niloticus*), strain supreme, with an initial average weight of 32.0 g (\pm 0.85) for 6 m³ net cages and 88.5 g (\pm 0.96) for 18 m³ net cages. The fish were fed three times a day with commercial extruded ration, crude protein levels from 40 to 32%, particle size from 2 to 8 mm and daily feeding rate starting with 8% of live weight (LW), decreasing up to 1% LW. It was conclued that, although no statistical difference in most indicators zootechnical (P>0.05), the production of tilapias in bigger net cages resulted in lower average total cost and higher rentability per kg of fish produced, 34.4% higher, resulting in better profitability.

Key words: Farming tilapia; profitability; zootechnical indicators

Relato de Caso: Recebido em 11/02/2012 - Aprovado em 04/12/2012

¹ Novaes e Martins Aquicultura Ltda. ME – Rua Cássia, 71 – CEP: 37.900-198 – Passos – MG – Brasil. e-mail: alex@nmaquicultura.com.br (autor correspondente)

² Departamento de Ciências Exatas, FCAV-UNESP. Via de Acesso Prof. Paulo Donato Castellani, s/n – CEP: 14.884-900 – Jaboticabal - SP – Brasil. e-mail: genertp@fcav.unesp.br

³ CAUNESP – Centro de Aquicultura da UNESP e Departamento de Economia Rural, FCAV-UNESP. Via de Acesso Prof. Paulo Donato Castellani, s/n – CEP: 14.884-900 – Jaboticabal - SP – Brasil. e-mail: minezesp@fcav.unesp.br

INTRODUÇÃO

Com a estagnação da pesca extrativista, a aquicultura torna-se cada vez mais importante no cenário mundial como forma de suprir a demanda pelo pescado que, a cada ano, vem aumentando (FAO, 2012). Este fato não é diferente no Brasil. Segundo o Ministério da Pesca e Aquicultura (MPA, 2012), o consumo per capita nacional passou de 7,62 kg ano-1, em 1996, para 9,75, em 2010. A produção aquícola nacional, de 415.649,4 t em 2009. passou para 479.398,6 em representando um incremento de 15,3%, sendo que neste período a aquicultura continental teve um crescimento de 16,9%, quando passou de 337.352,2 t para 394.340,0 t. A espécie mais produzida no país é a tilápia, que representou 39,4% do total de pescado proveniente da aquicultura continental em 2010 (MPA, 2012).

Entre os sistemas de produção de peixes, a utilização de tanques-rede vem se destacando nos últimos anos. Várias vantagens têm sido destacadas no cultivo neste sistema, como o aproveitamento de ambientes aquáticos existentes, reduzido custo de implantação e rápida montagem da infraestrutura, controle facilitado dos estoques e das colheitas, maior proteção contra predadores naturais, além da alta afinidade com a cultura dos pescadores (ONO e KUBITZA, 2003).

Na Região Sudeste do país, destaca-se a presença de grandes reservatórios, o que possibilita a produção aquícola em sistema superintensivo (tanques-rede), como ocorre em Furnas. A empresa começou a funcionar efetivamente em 1963, em Passos (MG). O reservatório possui uma extensão de 220 km e volume total de 22,95 bilhões de m³ de água, totalizando uma área inundada de 1.440 km² (ELETROBRAS FURNAS, on line).

Segundo estimativas da Empresa de Assistência Técnica e Extensão Rural do Estado de Minas Gerais - EMATER MG, a produção de tilápia em tanques-rede, que teve seu início na região na década de 90, conta atualmente com mais de 5.500 tanques-rede em plena produção nos reservatórios de Furnas e Peixotos (SOUZA e ALVES, com. pess.4).

Apesar da tilápia ser uma espécie disseminada, alguns aspectos relacionados ao desempenho produtivo impactos e seus econômicos ainda precisam ser estudados, dentre os quais, os relacionados aos rendimentos técnicos e econômicos em tanques de diferentes dimensões. A utilização de tanques de maior volume em relação aos de menor volume vem aumentando, mas os produtores ainda carecem de conhecimentos relacionados aos indicadores zootécnicos e econômicos que podem ser obtidos. Assim, o objetivo deste estudo foi realizar uma avaliação técnica e econômica da produção de tilápias em tanques-rede de dois volumes (6 m³ e 18 m³) e gerar dados para a tomada de decisão dos piscicultores e informações para elaboração de políticas públicas.

MATERIAL E MÉTODOS

Caracterização da área de estudo

O experimento foi conduzido em uma piscicultura comercial, no reservatório de Furnas, curso médio do rio Grande, município de São José da Barra (MG) (20°41′55″S e 46°15′20″W), na margem esquerda do reservatório.

Período e delineamento

O período experimental foi de 31 de janeiro a 30 de maio de 2009 (119 dias). Foram utilizados oito tanques-rede, sendo cinco de 6 m³ (2,0 x 2,0 x 1,5 m) e três de 18 m³ (3,0 x 3,0 x 2,0 m). Os tanques foram confeccionados com tubos de alumínio de 32 mm de diâmetro, tanto na estrutura do corpo como na tampa basculante (meia tampa), telas de malha losangular de 13 mm e 20 mm na tampa, fios de aço galvanizado revestidos com PVC de alta aderência, bitola 1,8 mm e flutuadores de boias amarelas de 35 litros (quatro boias para os tanques de 6 m³ e seis para os tanques de 18 m³). O comedouro foi feito com malha de 3 mm para impedir a passagem da ração.

A espécie utilizada foi a tilápia-do-nilo ($Oreochromis\ niloticus$), linhagem supreme, com peso médio inicial dos juvenis de 32,0 g (\pm 0,85) para os tanques de 6 m³ e 88,5 g (\pm 0,96) nos tanques de 18 m³. O peso médio inicial foi diferente entre os tratamentos em função de problemas ocorridos durante a fase de recria,

⁴ Frederico Ozanam de Souza e Francisco de Paula Vitor Alves (EMATER MG, Passos/Alfenas, Minas Gerais). Comunicação pessoal, em 9 de novembro de 2011.

antes do período experimental, quando foi observada grande mortalidade, necessitando de reposição dos animais.

A densidade de estocagem média inicial foi de 153 peixes m⁻³. Os peixes foram alimentados três vezes ao dia (8h, 12h e 16h), com ração comercial extrusada, indicada pelo fabricante para cultivo em sistema super-intensivo. O teor de proteína bruta variou de 40 à 32% e a granulometria de 2 a 8 mm. A quantidade fornecida variou em função da biomassa de estocagem e temperatura, iniciando com 8% do peso vivo (PV) e decrescendo até 1% do PV no decorrer do ciclo produtivo. Nos dias 31 de janeiro, 7 de março, 4 de abril, 2 e 30 de maio de 2009, foram realizadas as biometrias com amostras de 1% dos exemplares estocados. Entre as biometrias foram realizadas amostragens para avaliar o ganho em peso dos animais e possíveis ajustes no arraçoamento.

Para avaliação da qualidade da água do reservatório foram utilizados os levantamentos limnológicos de pH e oxigênio dissolvido antes (dez./08), durante (mar./09) e após (jun./09) o ciclo de produção. Essas mensurações eram realizadas pela Eletrobras Furnas.

Para ajustes na oferta da ração, a temperatura da água foi medida diariamente no local da instalação da piscicultura.

As variáveis zootécnicas avaliadas foram:

a) Taxa de Sobrevivência:

$$TS(\%) = \frac{NP_f}{NP_i} x100$$

b) Peso médio:

$$P_m(g) = \frac{\sum P(g)}{NP}$$

c) Ganho em peso médio diário:

$$GPD(g) = \frac{P_f - P_i}{ND}$$

d) Conversão alimentar aparente:

$$CAA = \frac{CR(kg)}{GBiom(kg)}$$

e) Biomassa de estocagem:

$$BE \text{ (kg.m}^{-3}\text{)} = \frac{Biom \text{ (kg)}}{V \text{ (m}^{-3}\text{)}}$$

sendo:

NP_f = número de peixes final

NP_i = número de peixes incial

P = Peso(g)

NP = número de peixes

P_f = peso médio final (g)

P_i = peso médio inicial (g)

ND = número de dias

CR = consumo de ração

GBiom = ganho em biomassa (Biomassa final – Biomassa inicial)

Biom = biomassa (kg)

 $V = volume (m^3)$

Para análise das médias obtidas, utilizou-se a análise de variância de medidas repetidas de um experimento em parcelas subdivididas, com os volumes de tanques-rede (2 níveis) nas parcelas e o tempo (4 níveis) nas sub-parcelas. Em cada tratamento (tanque x tempo), inicialmente, foram feitas 5 repetições. Por problemas técnicos, na combinação tanques de 18 m³ x tempo, foi possível a análise de 3 repetições. Foram avaliadas estatisticamente as variáveis zootécnicas: S, P_m, GPD, CAA e BE. As comparações das médias foram analisadas pelo teste de Tukey (*P*<0,05).

O custo total de produção foi detalhado de acordo com MARTINS e BORBA (2008). Nesta estrutura, os custos foram classificados em variáveis e fixos.

O custo variável foi composto pelos desembolsos com mão-de-obra permanente (salários e encargos sociais), diaristas, aquisição de juvenis, ração, sal comum, deslocamento do empresário, Contribuição Especial de Seguridade Social Rural (CESSR), adicionando-se o custo oportunidade, representado pelos juros sobre o capital circulante (JCC), calculado da seguinte forma:

$$JCC = \left(\frac{\sum desembolsos}{2}\right) x \left(\frac{6,75\% \ aa}{365}\right) x 119$$

Os itens que participaram do custo fixo foram: depreciação dos tanques-rede e das instalações de apoio (trapiche, depósito, canoa, equipamentos) e remuneração do capital fixo (RCF). Não foi considerada a remuneração do empresário, que pode ser obtida da diferença entre receita bruta e custo total de produção. O cálculo foi realizado a partir da fórmula:

$$RCF = \left(\frac{\sum investimento}{2}\right) x \left(\frac{6,00\% \ aa}{365}\right) x 119$$

Para determinação do custo total de produção, adotaram-se os seguintes procedimentos:

- a depreciação dos itens de capital fixo foi determinada pelo método linear e o valor de sucata variou em função do bem analisado;
- os itens do investimento tiveram o valor rateado, exceto os tanques-rede;
- para a mão-de-obra contratada foi considerado 1,5 salário mínimo (R\$ 765,00) mensal acrescido de 43% referentes aos encargos sociais;
- o valor pago a mão-de-obra avulsa foi de R\$ 30,00 o dia trabalhado;
- foi considerado nos custos, o deslocamento do empresário (1.200 km x R\$ 0,60/km = R\$ 720,00);
- a contribuição previdenciária (Contribuição Especial de Seguridade Social Rural CESSR) foi calculada à taxa de 2,3% sobre o valor da receita bruta proveniente da comercialização da produção;
- a remuneração do capital fixo foi calculada com base em uma taxa de juros de 6% a.a., calculada sobre o valor do capital fixo médio;
- os juros sobre o capital circulante foi calculado considerando-se o valor médio do montante de desembolso realizado durante o ciclo de produção, com uma taxa de juros de crédito rural para custeio, de 6,75% a.a.;
- os valores em reais foram os de mercado ocorridos no mês de abril de 2010.

Para análise de rentabilidade, foram estimadas as receitas brutas para cada situação estudada, considerando-se a produção média final obtida em cada tratamento e o preço de venda

praticado na região. O retorno líquido foi obtido pela diferença entre receita bruta e o custo total de produção. Foram também determinados os custos médios e os pontos de nivelamento de produção e preço que igualam a receita bruta ao custo total de produção. Os cálculos foram realizados de acordo com as fórmulas:

$$RB = P \times Q$$

$$RL = RB - CTP$$

$$CTP = CF + CV$$

$$CFM = \frac{CF}{Q}$$

$$CVM = \frac{CV}{Q}$$

$$CTM = \frac{CTP}{Q}$$

$$Q_N = \frac{CTP}{P}$$

em que:

RB(R\$) = Receita bruta

P (R\$) = Preço de venda do pescado

Q (kg) = Quantidade produzida

RL (R\$) = Retorno líquido

CTP (R\$) = Custo total de produção

CV (R\$) = Custo variável

CF (R\$) = Custo fixo

CFM (R\$) = Custo fixo médio

CVM (R\$) = Custo variável médio

CTM (R\$) = Custo total médio ou preço de nivelamento;

 $Q_N(kg)$ = Quantidade de nivelamento

RESULTADOS

A temperatura média da água no período de criação foi de 23,9 °C (± 1,3 °C), com máxima observada em março (25 °C) e mínima, em maio (22,0 °C). Os valores médios de pH e oxigênio dissolvido foram, respectivamente, 7,68 (± 0,23) e 8,13 (± 1,03 mg L⁻¹).

Indicadores zootécnicos

Não houve diferença significativa entre os dois tratamentos (*P*>0,05) para os indicadores peso médio (Pm), ganho em peso médio diário (GPD), conversão alimentar aparente (CAA) e biomassa de estocagem (BE); apenas a taxa de sobrevivência (TS) foi estatisticamente maior nos tanques menores (Tabela 1).

Avaliação econômica

No valor do investimento realizado para a infraestrutura considerou-se a compra e instalação dos tanques-rede e de demais itens como: depósito, canoa, equipamentos e taxa de licenciamento. Para os cinco tanques-rede de 6 m³ este valor foi de R\$ 24.309,30 e para os três tanques rede de 18 m³, de R\$ 26.689,30 (Tabela 2).

Tabela 1. Médias (± desvio padrão) das variáveis zootécnicas avaliadas em tanques rede de diferentes volumes, Furnas-MG.

Indicadores zootécnicos	Volumes dos tanques rede			
marcadores zootecnicos	6 m ³	18 m^3		
Taxa de sobrevivência (TS) (%)	99,5 ± 0,2 a	97,6 ± 1,1 b		
Peso médio (Pm) (g)	$514,0 \pm 72,3$	$537,3 \pm 42,7$		
Ganho de peso diário (GPD) (g)	$4,1 \pm 1,8$	3.9 ± 1.8		
Conversão alimentar aparente (CAA)	1.8 ± 2.0	$2,2 \pm 1,8$		
Biomassa de estocagem (BE) (kg m ⁻³)	$76,7 \pm 10,5$	$82,2 \pm 7,0$		

Letras diferentes na mesma linha indicam diferença significativa pelo teste de Tukey (P<0,05).

Tabela 2. Valor total do investimento (R\$), custo por volume de tanque (R\$ m⁻³), vida útil (ciclos) e valor de sucata (%) considerando-se cinco tanques-rede de 6 m³ e três tanques-rede de 18 m³. Valores em reais para o mês de abril/2010, Furnas-MG.

	Tanques-rede de 6 m³		Tanques-rede de 18 m³			****		
Itens	Valor total				Valor total		Vida útil	Valor de
	Quantidade	(R\$)	(R\$ m ⁻³)	Quantidade	(R\$)	(R\$ m ⁻³)	(ciclos)	sucata (%)
Tanques-rede	5	6.170,00	205,67	3	8.550,00	158,33	16	10
Material Poita	1	115,00	3,83	1	115,00	2,13	20	10
Trapiche	1	3.000,00	100,00	1	3.000,00	55,56	20	10
Corda (m)	25	403,85	13,46	25	403,85	7,48	4	0
Depósito	1	5.000,00	166,67	1	5.000,00	92,59	20	30
Canoa	1	3.600,00	120,00	1	3.600,00	66,67	10	30
Outros materiais	-	1.020,45	33,33	-	1.020,45	18,52	5	30
Licenciamento	1	5.000,00	166,67	1	5.000,00	92,59	10	60
Total do investimento		24.309,30			26.689,30			

No investimento em tanques-rede, observouse que, embora a participação no custo tenha sido maior nos tanques de 18 m³, o preço por unidade (m³) foi 23% inferior, sendo R\$ 205,66 para os tanques de 6 m³ e R\$ 158,33 para 18 m³, contribuindo para uma diferença significativa na participação dos custos fixos entre os tratamentos, de 13,17% e 7,98%, respectivamente. Na Tabela 3 são apresentados os valores dos itens que compuseram o custo de produção e o percentual de participação de cada item no custo total.

A ração foi o item que mais impactou o custo total nos dois casos estudados, sendo responsável por 48% e 54% do custo total de produção, nos tanques-rede de 6 m³ e 18 m³, respectivamente.

Tabela 3. Custo total de produção de 2.300 kg de tilápias em cinco tanques-rede de 6 m³ e 4.437 kg em três tanques-rede de 18 m³. Valores em reais para o mês de abril/2010, Furnas-MG.

	Tar	iques de 6 m	Tanques de 18 m ³			
ITEM	Total (R\$)	(R\$ m ⁻³)	(%)	Total (R\$)	(R\$ m ⁻³)	(%)
CUSTOS FIXOS	1.175,55	39,20	13,17	1.335,03	24,72	7,98
Depreciação:						
Tanques-rede	347,06	11,57	3,89	480,94	8,91	2,87
Material Poita	2,59	0,09	0,03	2,59	0,05	0,02
(tambor e concreto)	2,39	0,09	0,03	2,39	0,03	0,02
Trapiche (24 m²)	67,50	2,25	0,76	67,50	1,25	0,40
Corda (25 m)	50,48	1,68	0,57	50,48	0,93	0,30
Termômetro	2,56	0,09	0,03	2,56	0,05	0,02
Depósito (25 m²)	87,50	2,92	0,98	87,50	1,62	0,52
Canoa (6 m)	126,00	4,20	1,41	126,00	2,33	0,75
Outros materiais	87,50	2,92	0,98	87,50	1,62	0,52
Outros custos:						
Licenciamento	100.00	0.00	1 10	100.00	1.05	0.60
(Serviços técnicos e taxas)	100,00	3,33	1,12	100,00	1,85	0,60
Remuneração do capital fixo	304,36	10,15	3,41	329,96	6,11	1,97
(6% aa)	304,30	10,13	3,41	329,90	0,11	1,97
CUSTOS VARIÁVEIS	7.749,96	258,35	86,83	15.404,98	285,27	92,02
Juvenis*	1.575,00	52,50	17,65	4.230,00	78,33	25,27
Ração **	4.300,14	143,34	48,18	9.001,93	166,70	53,77
Sal comum	8,91	0,30	0,10	17,82	0,33	0,11
Deslocamento do empresário	360,00	12,00	4,03	360,00	6,67	2,15
Mão de obra	1.093,95	36,47	12,26	1.093,95	20,26	6,53
Mão de obra avulsa	105,00	3,50	1,18	105,00	1,94	0,63
Juros sobre o capital	84,78	2,83	0,95	167,66	3,10	1,00
circulante	01,70	-, 00	0,70	107,00	0,10	1,00
CESSR	222,18	7,41	2,49	428,61	7,94	2,56
CUSTO TOTAL DE PRODUÇÃO	8.925,51	297,55	100,00	16.740,01	309,99	100

^{*}Preço dos juvenis (unidade): 32 g = R \$ 0,35 e 88 g = R \$ 0,50.

A diferença no índice zootécnico CAA nos tanques de 18 m³ aumentou substancialmente o custo com ração neste tratamento e resultou em custo variável médio (R\$ kg¹) 3% maior nos tanques de 18 m³ (Tabela 4). Apesar disto, a diferença no custo total médio pode ser explicada pelo fato do custo fixo médio dos tanques de 18 m³ ter sido 41,2% inferior ao dos tanques de 6 m³. Neste caso, o item que mais contribuiu com os custos fixos nos dois tratamentos foi a depreciação dos tanques-rede. A diferença entre o custo total médio foi de 2,8% menor nos tanques de 18 m³,

chegando a uma diferença no retorno líquido pelo kg produzido, de 34,4% entre os tratamentos. A produção 92,9% superior obtida nos tanques maiores contribuiu para este resultado.

Embora o investimento inicial tenha sido maior nos tanques-rede de 18 m³, o custo por unidade (m³) foi menor, o que contribuiu para baixar o custo fixo, conforme demonstrado na Tabela 5, onde é apresentado um comparativo do custo total de produção e dos indicadores de rentabilidade por m³.

^{**} Ração (40–32% PB, 2–8 mm, preço médio (R\$ 1,09-1,11), para tanques de 18 e 6 m³, respectivamente.

Tabela 4. Indicadores econômicos da produção de tilápias em cinco tanques-rede de 6 m³ e três de 18 m³. Valores em reais de abril /2010, Furnas (MG).

	Volume dos tanques-rede		
ITEM	6 m ³	18 m ³	
Q (kg)	2.300	4.437	
P _m (R\$)	4,20	4,20	
RB (R\$)	9.660,00	18.635,40	
RL (R\$)	734,50	1.895,39	
PN (kg)	2125	3986	
RL (R\$ kg-1)	0,32	0,43	
CTM (R\$ kg-1)	3,88	3,77	
CVM (R\$ kg-1)	3,37	3,47	
CFM (R\$ kg-1)	0,51	0,30	

 $Q = Quantidade produzida; P_m = Preço médio de venda; RB = Receita bruta; RL = Retorno líquido; PN = Ponto de nivelamento da produção; CTM = Custo total médio; CVM = Custo variável médio; CFM = Custo fixo médio.$

Tabela 5. Custos de produção e indicadores de rentabilidade da produção de tilápias por metro cúbico em tanques-rede de 6 m³ e de 18 m³. Valores em reais de abril / 2010, Furnas-MG.

	Volume dos tanques-rede		
	6 m ³	18 m ³	
INDICADORES	(R\$ m ⁻³)	(R\$ m ⁻³)	
Produção (kg m ⁻³)	76,66	82,17	
Custo Fixo	39,18	24,72	
Custo Variável	258,33	285,28	
Custo Total	297,52	310,00	
Receita Bruta	322,00	345,10	
Receita Liquida	24,48	35,10	

Nos dados apresentados na Tabela 5 se constata uma diferença importante entre o custo fixo e o indicador de retorno líquido, evidenciando uma superioridade econômica para os tanques rede de maior volume.

DISCUSSÃO

A temperatura média da água ficou abaixo da faixa ótima para crescimento dos peixes de águas tropicais, a qual, segundo CYRINO e CONTE (2000), varia entre 25 e 32 °C. Este resultado foi similar ao indicado por ZIMMERMANN (2000) que, trabalhando com tilápias em tanques-rede numa densidade entre 200-250 indivíduos m⁻³, observou que o tempo necessário para os peixes

atingirem peso médio de 400 g foi de três a quatro semanas maior em temperaturas médias de 23 °C do que em temperaturas de 26 °C, mantidas as mesmas condições de cultivo. Este é um dos parâmetros que mais interfere no metabolismo dos peixes. Segundo ONO e KUBITZA (2003), sob temperaturas muito baixas, o consumo de alimento é reduzido e pode até cessar, resultando em redução ou paralisação do crescimento.

A taxa de sobrevivência maior nos tanques de 6 m³ pode estar relacionada aos vários manejos para ajustar a densidade inicial entre os indivíduos dos tanques de 18 m³, já que antes do início do experimento (31/01/09), o número de animais m⁻³ estava abaixo do projetado. A manipulação dos animais pode ter provocado queda da resistência natural do organismo, deixando-os susceptíveis ao ataque de agentes patogênicos (URBINATI e CARNEIRO, 2004), o que não ocorreu nos tanques de 6 m³.

Os índices de produtividade em tanques-rede de diferentes dimensões também não foram afetados em outra espécie, nativa da bacia amazônica. GOMES *et al.* (2003), trabalhando com juvenis de tambaqui (*Colossoma macropomum*) e avaliando o efeito de tanques-rede de 1 e 6 m³, não observaram diferença nos índices de produtividade.

A baixa eficiência na conversão alimentar, observada nos animais mantidos nos dois volumes pode ser explicada pelo fato de tratar-se de um projeto recém-implantado, no qual empreendedor e arraçoador encontravam-se em fase de experiência na atividade. A queda na temperatura da água, observada no mês de maio, também pode ter interferido nesta variável. Peixes são animais ectotérmicos, cuja taxa metabólica e utilização dos nutrientes estão associadas à variação da temperatura, além do comprometimento da taxa de crescimento em épocas ou locais mais frios (PEZZATO et al., 2004). ONO e KUBITZA (2003) consideram que, para o cultivo de tilápias em tanques-rede, os índices devem variar entre 1,4 e 1,8. O manejo excessivo nos tanques de maior volume, para ajustar a densidade no início dos trabalhos, pode ter contribuído ainda mais para piorar o índice de CAA neste tratamento. A CAA é uma variável importante para o resultado econômico da atividade, uma vez que a ração contribui com a

maior parte do custo total de produção, geralmente entre 40 e 70%, dependendo do sistema de cultivo empregado, da escala de produção, da produtividade alcançada e dos preços dos outros insumos de produção, dentre outros fatores (KUBITZA, 2011).

No valor do investimento realizado para a infraestrutura observou-se que, embora tenha sido maior nos tanques de 18 m³, o preço por unidade (m³) foi 23% inferior, contribuindo para uma diferença significativa na participação dos custos fixos entre os tratamentos, de 13,17% e 7,98%, respectivamente. Esses resultados corroboram com os apresentados por FURLANETO *et al.* (2006; 2010), que avaliaram o custo e rentabilidade da produção de tilápia na Região do Médio Paranapanema, estado de São Paulo, safras 2004/2005 e 2009, verificaram menor investimento por metro cúbico de tanques-rede na implantação de projetos com tanques de 18 m³ em relação aos tanques de 6 m³.

A participação da ração no custo de produção foi menor do que a obtida em outros trabalhos (CARNEIRO et al., 1999; VERA-CALDERÓN e FERREIRA, 2004; FURLANETO et al., 2006; 2010). Esta diferença pode ser explicada pelo peso médio final ter sido de 526 g, menor do que o comumente obtido em empreendimentos demandando, portanto, comerciais, quantidade de ração. A diferença da participação no custo com os juvenis é explicada pelo tamanho inicial dos mesmos, que foi diferente em cada tratamento. Neste estudo, o peso inicial médio dos juvenis foi maior que o normalmente praticado na região, onerando o peso deste item no custo total de produção.

FURLANETO *et al.*(2006; 2010), avaliaram o custo operacional por unidade (kg), também em tanques-rede de 6 m³ e 18 m³, e apontaram vantagens econômicas para tanques de menor volume nas condições estudadas, entretanto, os índices de produtividade observados foram distintos. No presente estudo, os principais indicadores zootécnicos avaliados (Pm, GPD, CAA e BE) não apresentaram diferenças estatísticas significativas entre os tratamentos, o que pode explicar o resultado distinto do obtido por esses autores. O menor investimento necessário nas instalações para tanques de maiores volumes, por

unidade (m³), pode ter contribuído nesse resultado.

Nos últimos anos, a demanda pelo pescado na região de estudo tem crescido, aumentando os preços pagos pelo produto. Em 2009, o preço praticado do pescado ficou entre R\$ 3,80 e R\$ 4,50 (peixe inteiro, no atacado). Neste estudo, apesar do peso médio final dos peixes estarem abaixo das exigências do mercado regional (que exige peixes de 800 g ou mais), o resultado não ficou inviabilizado, uma vez que o preço pago foi superior ao de outras regiões. Alguns produtores têm adquirido peixes em torno de 500 g, trabalhando com a fase de terminação destes animais e posteriormente comercializando-os no mercado varejista.

CONCLUSÕES

Na análise econômica do cultivo da tilápiado-nilo em tanques-rede de diferentes dimensões, os tanques maiores, de 18 m³, proporcionaram menor custo total médio e maior retorno líquido médio por quilo de peixe produzido (R\$ kg¹) em relação aos tanques de menor volume (6 m³).

AGRADECIMENTOS

Os autores agradecem às empresas Guabi, Tanrede, Projeto Peixes, EMATER MG e a Universidade do Estado de Minas - UEMG, pelo apoio no projeto.

REFERÊNCIAS

- CARNEIRO, P.C.F.; MARTINS, M.I.E.G.; CYRINO, J.E.P. 1999 Estudo de caso da criação comercial da tilápia vermelha em tanques-rede: avaliação econômica. *Informações Econômicas*, 29(8): 52-61.
- CYRINO, J.E.P. e CONTE, L. 2000 Fundamentos da criação de peixes em tanques-rede. Piracicaba: Aqualu. 55p.
- ELETROBRAS FURNAS (sem data). Disponível em: http://www.furnas.com.br/memoria_apresen tacao.asp> Acesso em: 12 ago. 2011.
- FAO 2012 The state of world fisheries and aquaculture 2012. FAO Fisheries and Aquaculture Department, Rome. 209p. Disponível em: http://www.fao.org/docrep/016/i2727e/i2727e00.htm Acesso em: 07 ago. 2012.

- FURLANETO, F.P.B.; AYROZA, D.M.M.R.; AYROZA, L.M.S. 2006 Custo e rentabilidade da produção de tilápia (*Oreochromis* spp.) em tanques-rede no Médio Paranapanema, Estado de São Paulo, safra 2004/05. *Informações Econômicas*, 36(3): 63-69.
- FURLANETO, F.P.B.; AYROZA, D.M.M.R.; AYROZA, L.M.S. 2010 Análise econômica da produção de tilápia em tanques-rede, ciclo de verão, região do Médio Paranapanema, Estado de São Paulo, 2009. *Informações Econômicas*, 40(4): 5-11.
- GOMES, L.G.; BRANDÃO, F.R.; CHAGAS, E.C.; FERREIRA, B.; LOURENÇO, J.N.P. 2003 Efeito do volume do tanque-rede na produtividade do tambaqui (*Colossoma macropomum*) durante a recria. *Acta Amazônica*, 34: 111-113.
- KUBITZA, F. 2011 *Tilápia: tecnologia e planejamento na produção comercial.* 2ª ed. Jundiaí: Acqua Imagem. 316p.
- MARTINS, M.I.E.G. e BORBA, M.M.Z. 2008 *Custo de produção*. Jaboticacal: UNESP. 24p.
- MPA Ministério da Pesca e Aquicultura 2012

 Boletim estatístico da pesca e aquicultura 2010.

 Brasília. 129p. Disponível em: http://www.mpa.gov.br/images/Docs/Informacoes_e_Estat

- isticas/Boletim%20Estat%C3%ADstico%20MPA%202010.pdf>. Acesso em: 13 mai. 2012.
- ONO, E. e KUBITZA,F. 2003 *Cultivo de peixes em tanques-rede* 3ª ed. Jundiaí: Acqua Imagem. 112p.
- PEZZATO, L.E.; BARROS, M.M.; FRACALOSSI, D.M.; CYRINO, J.E.P. 2004 Nutrição de Peixes. In: CYRINO, J.E.P.; URBINATI, E.C.; FRACALOSSI, D.M.; CASTAGNOLLI, N. *Tópicos especiais em piscicultura de água doce tropical intensiva*. São Paulo: Tec Art. p.75-169.
- URBINATI, E.C. e CARNEIRO, P.C.F. 2004 Práticas de manejo e estresse dos peixes em piscicultura. In: CYRINO, J.E.P.; URBINATI, E.C.; FRACALOSSI, D.M.; CASTAGNOLLI, N. *Tópicos especiais em piscicultura de água doce tropical intensiva*. São Paulo: Tec Art. p.171-193.
- VERA-CALDERÓN, L.E.; FERREIRA, A.C.M. 2004 Estudo da economia de escala na piscicultura em tanques-rede, no estado de São Paulo. *Informações Econômicas*, 34(1): 7-17.
- ZIMMERMANN, S. 2000 Observações no crescimento de tilápias nilóticas (*Oreochromis niloticus*) da linhagem chitralada em dois sistemas de cultivos em três temperaturas de água. In: INTERNATIONAL SYMPOSIUM ON TILAPIA AQUACULTURE, 5., Rio de Janeiro, 3-7/set./2000. *Anais...* Rio de Janeiro: ATA. p.323-327.