Seaweed inclusion in artificial diet of purple sea urchin Paracentrotus lividus: effects on somatic and gonadal development

Authors

  • Vitor Almeida Pontinha Universidade Federal de Santa Catarina, Centro de Ciências Agrárias, Departamento de Aquicultura – Florianópolis (SC), Brazil. https://orcid.org/0000-0003-1668-6994
  • Julie Maguire Bantry Marine Research Station, Gearhies - Bantry (Co. Cork), Ireland. https://orcid.org/0000-0002-4326-8790
  • Carmen Simioni Universidade Federal de Santa Catarina, Centro de Ciências Agrárias, Departamento de Aquicultura – Florianópolis (SC), Brazil.
  • Felipe do Nascimento Vieira Universidade Federal de Santa Catarina, Centro de Ciências Agrárias, Departamento de Aquicultura – Florianópolis (SC), Brazil. https://orcid.org/0000-0001-9794-8671
  • Leila Hayashi Universidade Federal de Santa Catarina, Centro de Ciências Agrárias, Departamento de Aquicultura – Florianópolis (SC), Brazil. https://orcid.org/0000-0002-1602-9815

DOI:

https://doi.org/10.20950/1678-2305/bip.2024.50.e877

Keywords:

Gonadosomatic index, Food preference, Echinoderm culture, Mariculture, Artificial diet, Laminaria digitata

Abstract

This work evaluated the inclusion of seaweed in artificial diet of Paracentrotus lividus sea urchins weighing between 11 and 14 g to test its effect on growth and gonadal yield. Initially, multiple-choice feeding preference assays were conducted using 20% fresh and dried specimens of Laminaria digitata, Sargassum muticum, and Ulva lactuca seaweeds incorporated into an artificial diet. Then, over the course of 20 weeks, experiments comprised of four different diets were carried out, including one for each seaweed incorporated into the artificial diet. Afterwards, sea urchins were weighed to evaluate somatic growth. From the eighth week onwards, animals were selected for gonadosomatic index and gonad coloration analyses. In the feeding preference test, fresh and dried L. digitata showed the best results. In test with seaweed incorporated into the artificial diet, the preference was for diets containing L. digitata and S. muticum. Both diets also promoted a higher gonadosomatic index than that of the control at the end of the experiment. Therefore, it can be concluded that the inclusion of L. digitata and S. muticum in the artificial diet of sea urchins can act as a food stimulant to improve growth performance.

References

Azad, A. K., Pearce, C. M., & McKinley, R. S. (2011). Effects of diet and temperature on ingestion, absorption, assimilation, gonad yield, and gonad quality of the purple sea urchin (Strongylocentrotus purpuratus). Aquaculture, 317(1-4), 187-196. https://doi.org/10.1016/j.aquaculture.2011.03.019

Baião, L. F., Rocha, F., Costa, M., Sá, T., Oliveira, A., Maia, M. R. G., Fonseca, A. J. M., Pintado, M., & Valente, L. M. (2019). Effect of protein and lipid levels in diets for adult sea urchin Paracentrotus lividus (Lamarck, 1816). Aquaculture, 506, 127-138. https://doi.org/10.1016/j.aquaculture.2019.03.005

Bertocci, I., Domínguez, R., Machado, I., Freitas, C., Domínguez- Godino, J., Sousa-Pinto, I., Gonçalves, M., & Gaspar, M. (2014). Multiple effects of harvesting on populations of thepurple sea urchin Paracentrotus lividus in north Portugal. Fisheries Research, 150, 60-65. https://doi.org/10.1016/j.fishres.2013.10.010

Blount, C., Chick, R. C., & Worthington, D. G. (2017). Enhancement of an underexploited fishery − Improving the yield and colour of roe in the sea urchin Centrostephanus rodgersii by reducing density or transplanting individuals. Fisheries Research, 186(Part 2), 586-597. https://doi.org/10.1016/j.fishres.2016.08.022

Boudouresque, C. F., & Verlaque, M. (2013). Paracentrotus lividus. In: Lawrence, J. M. (Ed.), Sea urchins: Biology and ecology (3rd ed., pp. 297-327). Elsevier. https://doi.org/10.1016/B978-0-12-396491-5.00021-6

Cacabelos, E., Olabarria, C., Incera, M., & Troncoso, J. S. (2010). Do grazers prefer invasive seaweeds? Journal of Experimental Marine Biology and Ecology, 393(1-2), 182-187. https://doi.org/10.1016/j.jembe.2010.07.024

Cardoso, A. C., Arenas, F., Sousa-Pinto, I., Barreiro, A., & Franco, J. N. (2020). Sea urchin grazing preferences on native and non-native macroalgae. Ecological Indicators, 111, 106046. https://doi.org/10.1016/j.ecolind.2019.106046

Castilla-Gavilán, M., Cognie, B., Ragueneau, E., Turpin, V., & Decottignies, P. (2019). Evaluation of dried macrophytes as an alternative diet for the rearing of the sea urchin Paracentrotus lividus (Lamarck, 1816). Aquaculture Research, 50, 1762-1769. https://doi.org/10.1111/are.14045

Cook, E. J., Hughes, A. D., Orr, H., Kelly, M. S., & Black, K. D. (2007). Influence of dietary protein on essential fatty acids in the gonadal tissue of the sea urchins Psammechinus miliaris and Paracentrotus lividus (Echinodermata). Aquaculture, 273(4), 586-594. https://doi.org/10.1016/j.aquaculture.2007.10.032

Cuesta-Gomez, D. M., & Sánchez-Saavedra, M. P. (2017). Effects of protein and carbohydrate levels on survival, consumption and gonad index in adult sea urchin Strongylocentrotus purpuratus (Stimpson1857) from Baja California, Mexico. Aquaculture Research, 48, 1596-1607. https://doi.org/10.1111/are.12994

Cyrus, M. D., Bolton, J. J., & Macey, B. M. (2015a). The role of the green seaweed Ulva as a dietary supplement for full lifecycle grow-out of Tripneustes gratilla. Aquaculture, 446, 187-197. https://doi.org/10.1016/j.aquaculture.2015.05.002

Cyrus, M. D., Bolton, J. J., Macey, B. M., & De We, L. (2014). The development of a formulated feed containing Ulva (Chlorophyta) to promote rapid growth and enhanced production of high quality roe in the sea urchin Tripneustes gratilla (Linnaeus). Aquaculture Research, 45, 159-176. https://doi.org/10.1111/j.1365-2109.2012.03219.x

Cyrus, M. D., Bolton, J. J., Scholtz, R., & Macey, B. M. (2015b). The advantages of Ulva (Chlorophyta) as an additive in sea urchin formulated feeds: effects on palatability, consumption and digestibility. Aquaculture Nutrition, 21, 578-591. https://doi.org/10.1111/anu.12182

Dawczynski, C., Schubert, R., & Jahreis, G. (2007). Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chemistry, 103(3), 891-899. https://doi.org/10.1016/j.foodchem.2006.09.041

Dong, C., He, G., Mai, K. S., Zhou, H. H., & Xu, W. (2016). Palatability of water-soluble extracts of protein sources and replacement of fishmeal by a selected mixture of protein sources for juvenile turbot (Scophthalmus maximus). Journal of Ocean University of China, 15, 561-567. https://doi.org/10.1007/s11802-016-2898-8

Duffy, J. E., & Hay, M. E. (1990). Seaweed adaptations to herbivory. Bioscience, 40(5), 368-375. https://doi.org/10.2307/1311214

Dworjanyn, S. A., Pirozzi, I., & Liu, W. (2007). The effect of the addition of algae feeding stimulants to artificial diets for the sea urchin Tripneustes gratilla. Aquaculture, 273(4), 624-633. https://doi.org/10.1016/j.aquaculture.2007.08.023

Evans, F., & Critchley, A. T. (2014). Seaweeds for animal production use. Journal of Applied Phycology, 26(2), 891-899. https://doi.org/10.1007/s10811-013-0162-9

Fernandez, C., & Boudouresque, C. F. (2000). Nutrition of the sea urchin Paracentrotus lividus (Echinodermata: Echinoidea) fed different artificial food. Marine Ecology Progress Series, 204, 131-141. Retrieved from https://www.jstor.org/stable/24863629

Fernandez, C., & Pergent, G. (1998). Effect of diet and rearing condition on growth parameters in the sea urchin Paracentrotus lividus. Journal of Shellfish Research, 17(5), 1571-1581.

Fleming, A. E., Bameveld, R. J. V., & Hone, P. W. (1996). The development of artificial diets for abalone: A review and future directions. Aquaculture, 140(1-2), 5-53. https://doi.org/10.1016/0044-8486(95)01184-6

Food and Agriculture Organization of the United Nations (FAO) (2020). FAO yearbook of fishery and aquaculture statistics capture production 2018. FAO.

Giglioli, A. A., Addis, P., Pasquini, V., Secci, M., & Hannon, C. (2021). First assessment of restocking efficacy of the depleted sea urchin Paracentrotus lividus populations in two contrasted sites. Aquaculture Research, 1-5. https://doi.org/10.1111/are.15098

Goebel, S. E., Baer, J., & Geist, J. (2017). Effects of temperature and rearing density on growth of juvenile European whitefish (Coregonus macrophthalmus) in aquaculture. Fundamental and Applied Limnology, 189(3), 257-266. https://doi.org/10.1127/fal/2016/0803

Hammer, H. S., Watts, S. A., Lawrence, A. L., Lawrence, J. M., & Desmond, R. (2006). The effect of dietary protein on consumption, survival, growth and production of the sea urchin Lytechinus variegatus. Aquaculture, 254(1-4), 483-495. https://doi.org/10.1016/j.aquaculture.2005.10.047

Harry, L. G., & Eddy, S. D. (2015). Sea urchin ecology and biology. In: Brown, N. P., & Eddy, S. D. (Eds.), Echinoderm aquaculture (pp 3-24). Wiley-Blackwell. https://doi.org/10.1002/9781119005810.ch1

Heflin, L. E., Gibbs, V. K., Powell, M. L., Makowsky, R., Lawrence, J. M., Lawrence, A. L., & Watts, S. A. (2012). Effect of dietary protein and carbohydrate levels on weight gain and gonad production in the sea urchin Lytechinus variegatus. Aquaculture, 358-359, 253-261. https://doi.org/10.1016/j.aquaculture.2012.06.009

Heflin, L. E., Makowsky, R., Taylor, J. C., Williams, M. B., Lawrence, A. L., & Watts, S. A. (2016a). Production and economic of dietary protein and carbohydrate in the culture of juvenile sea urchin Lytechinus variegatus. Aquaculture, 463, 51-60. https://doi.org/10.1016/j.aquaculture.2016.05.023

Heflin, L. E., Raubenheimer, D., Simpson, S. J., & Watts, S. A. (2016b). Balancing macronutrient intake in cultured Lytechinus variegatus. Aquaculture, 450, 295-300. https://doi.org/10.1016/j.aquaculture.2015.08.001

Ito, K., & Hori, K. (1989). Seaweed: chemical composition and potential food uses. Food Reviews International, 5(1), 101-144. https://doi.org/10.1080/87559128909540845

Kelly, M. S., & Symonds, R. C. (2013). Carotenoids in sea urchins. In: Lawrence, J. M. (Ed.), Sea Urchins: biology and ecology (3rd ed., pp. 171-177). Elsevier.

Kennedy, E. J., Robinson, S. M. C., Parsons, G. J., & Castell, J. D. (2005). Effect of protein source and concentration on somatic growth of juvenile green sea urchins Strongylocentrotus droebachiensis. Journal of the World Aquaculture Society, 36(3), 320-336. https://doi.org/10.1111/j.1749-7345.2005.tb00336.x

Lawrence, J. M. (2001). Edible sea urchins: biology and ecology. Elsevier.

Lawrence, J. M. (2013). Sea urchins: Biology and ecology. Elsevier.

Lawrence, J. M., Olave, S., Otaiza, R., Lawrence, A. L., & Bustos, E. (1997). Enhancement of gonad production in the sea urchin Loxechinus albus in Chile fed extruded feeds. Journal of the World Aquaculture Society, 28(1), 91-96. https://doi.org/10.1111/j.1749-7345.1997.tb00966.x

Lourenço, S., Cunha, B., Raposo, A., Neves, M., Santos, P. M., Gomes, A. S., Tecelão, C., Ferreira, S. M. F., Baptista, T., Gonçalves, S. C., & Pombo, A. (2021). Somatic growth and gonadal development of Paracentrotus lividus (Lamarck, 1816) fed with diets of different ingredient sources. Aquaculture, 539, 736589. https://doi.org/10.1016/j.aquaculture.2021.736589

Lourenço, S., José, R., Andrade, C., & Valente, L. M. P. (2020). Growth performance and gonad yield of sea urchin Paracentrotus lividus (Lamarck, 1816) fed with diets of increasing protein: energy ratios. Animal Feed Science and Technology, 270, 114690. https://doi.org/10.1016/j.anifeedsci.2020.114690

Lourenço, S., Raposo, A., Cunha, B., Pinheiro, J., Santos, P. M., Gomes, A. S., Ferreira, S., Gil, M. M., Costa, J. L., & Pombo, A. (2022). Temporal changes in sex-specific color attributes and carotenoid concentration in the gonads (roe) of the purple sea urchin (Paracentrotus lividus) provided dry feeds supplemented with β-carotene. Aquaculture, 560, 738608. https://doi.org/10.1016/j.aquaculture.2022.738608

MacArtain, P., Gill, C. I. R., Brooks, M., Campbell, R., & Rowland, I. R. (2007). Nutritional value of edible seaweeds. Nutrition Reviews, 65(12), 535-543. https://doi.org/10.1111/j.1753-4887.2007.tb00278.x

McBride, S. C. (2005). Sea urchin aquaculture. American Fisheries Society Symposium, 46, 179-208.

Monteiro, C. A., Engelen, A. H., & Santos, R. O. P. (2009). Macro- and mesoherbivores prefer native seaweeds over invasive brown seaweed Sargassum muticum: a potential regulating role on invasions. Marine Biology, 156(12), 2505-2515. https://doi.org/10.1007/s00227-009-1275-1

Paul, V. J., & Puglisi, M. P. (2004). Chemical mediation of interactions among marine organisms. Natural Product Reports, 21(1), 189-209. https://doi.org/10.1039/b302334f

Pearce, C. M., Daggett, T. L., & Robinson, S. M. C. (2002). Effect of protein source ratio and protein concentration in prepared diets on gonad yield and quality of the green sea urchin, Strongylocentrotus droebachiensis. Aquaculture, 214(1-4), 307-332. https://doi.org/10.1016/S0044-8486(02)00041-8

Pearce, C. M., Daggett, T. L., & Robinson, S. M. C. (2003). Effects of starch type, macroalgal meal source, and betacarotene on gonad yield and quality of the green sea urchin, Strongylocentrotus droebachiensis (Muller), fed prepared diets. Journal of Shellfish Research, 22(2), 505-519.

Pearce, C. M., Daggett, T. L., & Robinson, S. M. C. (2004). Effect of urchin size and diet on gonad yield and quality in the green sea urchin (Strongylocentrotus droebachiensis). Aquaculture, 233(1-4), 337-367. https://doi.org/10.1016/j.aquaculture.2003.09.027

Pereira, R. C., & Vasconcelos, M. A. (2014). Chemical defense in the red seaweed Plocamium brasiliense: spatial variability and differential action on herbivores. Brazilian Journal of Biology, 74(3), 545-552. https://doi.org/10.1590/bjb.2014.0080

Phillips, K., Bremer, P., Silcock, P., Hamid, N., Delahunty, C., Barker, M., & Kissick, J. (2010). Effect of gender, diet and storage time on the physical properties and sensory quality of sea urchin (Evechinus chloroticus) gonads. Aquaculture, 288(3-4), 205-215. https://doi.org/10.1016/j.aquaculture.2008.11.026

Prince, J. S., LeBlanc, W. G., & Marciá, S. (2004). Design and analysis of multiple choice feeding preference data. Oecologia, 138, 1-4. https://doi.org/10.1007/s00442-003-1413-2

Purbiantoro, W., Utomo, N. B. P., & Sudrajat, O. A. (2014). The addition of Ulva reticulata as a stimulant intoartificial feed on the gonad condition of the collector sea urchin (Tripneustes gratilla Linnaeus 1758). Journal of Marine Science and Technology, 6(1), 63-79. https://doi.org/10.29244/jitkt.v6i1.8628

Ribeiro, D. F. O., & Nuñer, A. P. O. (2008). Feed preferences of Salminus brasiliensis (Pisces, Characidae) larvae in fish ponds. Aquaculture, 274(1), 65-71. https://doi.org/10.1016/j.aquaculture.2007.11.012

Robinson, S. M. C., Castell, J. S., & Kennedy, E. J. (2002). Developing suitable colour in the gonads of cultured green sea urchins (Strongylocentrotus droebachiensis). Aquaculture, 206(3-4), 289-303. https://doi.org/10.1016/S0044-8486(01)00723-2

Rupérez, P. (2002). Mineral content of edible marine seaweeds. Food Chemistry, 79(1), 23-36. https://doi.org/10.1016/S0308-8146(02)00171-1

Sakai, Y., Tajima, K. I., & Agatsuma, Y. (2003). Mass production of seed of the Japanese edible sea urchins Strongylocentrotus intermedius and Strongylocentrotus nudus. In: Lawrence, J. M., & Guzmán, O. (Eds.), Proceedings of the International Conference on Sea-Urchin Fisheries and Aquaculture (pp. 289-298). DEStech.

Santos, P. S., Albano, P., Raposo, A., Ferreira, S. M. F., Costa, J. L., & Pombo, A. (2020). The effect of temperature on somatic and gonadal development of the sea urchin Paracentrotus lividus (Lamarck, 1816). Aquaculture, 528, 735487. https://doi.org/10.1016/j.aquaculture.2020.735487

Sartori, D., Pellegrini, D., Macchia, S., & Gaion, A. (2016). Can echinoculture be a feasible and effective activity? Analysis of fast reliable breeding conditions to promote gonadal growth and sexual maturation in Paracentrotus lividus. Aquaculture, 451, 39-46. https://doi.org/10.1016/j.aquaculture.2015.08.037

Schlosser, S. C., Lupatsch, I., Lawrence, J. M., Lawrence, A. L., & Shpigel, M. (2005). Protein and energy digestibility and gonad development of the European sea urchin Paracentrotus lividus (Lamarck) fed algal and prepared diets during spring and fall. Aquaculture Research, 36, 972-982. https://doi.org/10.1111/j.1365-2109.2005.01306.x

Seymour, S., Paul, N. A., Dworjanyn, S. A., & de Nys, R. (2013). Feeding preference and performance in the tropical sea urchin Tripneustes gratilla. Aquaculture, 400-401, 6-13. https://doi.org/10.1016/j.aquaculture.2013.02.030

Shpigel, M., McBride, S. C., Marcianoa, S., Rona, S., & Ben-Amotz, A. (2005). Improving gonad colour and somatic index in the European sea urchin Paracentrotus lividus. Aquaculture, 245(1-4), 101-109. https://doi.org/10.1016/j.aquaculture.2004.11.043

Shpigel, M., Schlosser, S. C., Ben-Amotz, A., Lawrence, A. L., & Lawrence, J. M. (2006). Effects of dietary carotenoid on the gut and the gonad of the sea urchin Paracentrotus lividus. Aquaculture, 261(4), 1269 1280. https://doi.org/10.1016/j.aquaculture.2006.08.029

Siikavuopio, S. I., Dale, T., & Mortensen, A. (2007). The effects of stocking density on gonad growth, survival and feed intake of adult green sea urchin (Strongylocentrotus droebachiensis). Aquaculture, 262(1), 78-85. https://doi.org/10.1016/j.aquaculture.2006.09.045

Sotka, E. E., & Gantz, J. (2013). Preliminary evidence that the feeding rates of generalist marine herbivores are limited by detoxification rates. Chemoecology, 23(4), 233-240. https://doi.org/10.1007/s00049-013-0137-y

Souza, C. F., Oliveria, A. S., & Pereira, R. C. (2008). Feeding preference of the sea urchin Lytechinus variegatus (Lamarck, 1816) on seaweeds. Brazilian Journal of Oceanography, 56(3), 239-247. https://doi.org/10.1590/S1679-87592008000300008

Steneck, R. S., Bellwood, D. R., & Hay, M. E. (2017). Herbivory in the marine realm. Current Biology, 27(11), R484-R489. https://doi.org/10.1016/j.cub.2017.04.021

Stefánsson, G., Kristinsson, H., Ziemer, N., Hannon, C., & James, P. (2017). Markets for sea urchins: a review of global supply and markets. Skýrsla Matís, 10-17. https://doi.org/10.13140/RG.2.2.12657.99683

Suckling, C. C., Symonds, R. C., Kelly, M. S., & Young, A. J. (2011). The effect of artificial diets on gonad colour and biomass in the edible sea urchin Psammechinus miliaris. Aquaculture, 318(3-4), 335-342. https://doi.org/10.1016/j.aquaculture.2011.05.042

Symonds, R. C., Caris-Veyrat, C., Kelly, M. S., & Young, A. J. (2007). Carotenoids in the sea urchin Paracentrotus lividus: occurrence of 9′-cis echinenone as the dominant carotenoid in gonad colour determination. Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 148(4), 432- 444. https://doi.org/10.1016/j.cbpb.2007.07.012

Symonds, R. C., Kelly, M. S., Suckling, C. C., & Young, A. J. (2009). Carotenoids in the gonad and gut of the edible sea urchin Psammechinus miliaris. Aquaculture, 288(1-2), 120-125. https://doi.org/10.1016/j.aquaculture.2008.11.018

Tomas, F., Box, A., & Terrados, J. (2011). Effects of invasive seaweeds on feeding preference and performance of a keystone Mediterranean herbivore. Biological Invasions, 13, 1559-1570. https://doi.org/10.1007%2Fs10530-010-9913-6

Tomšić, S., Conides, A. J., & Aničić, I. (2015). Growth and gonad changes in stony sea urchin, Paracentrotus lividus (lamark, 1816) fed artificially formulated feed and benthic macrophyte diet. Naše More, 62(2), 85-90. https://doi.org/10.17818/NM/2015/2.7

Yeruham, E., Abelson, A., Rilov, G., Ben Ezra, D., & Shpigel, M. (2019). Energy budget of cultured Paracentrotus lividus under different temperatures. Aquaculture, 501, 7-13. https://doi.org/10.1016/j.aquaculture.2018.11.006

Downloads

Published

2024-11-22

Issue

Section

Scientific Article

Most read articles by the same author(s)

<< < 1 2