Efeito das macroalgas Sargassum filipendula e Ascophyllum nodosum na resistência do camarão Litopenaeus vannamei ao choque hipotérmico
DOI:
https://doi.org/10.20950/1678-2305/bip.2024.50.e854Palavras-chave:
Immunologia, Microbiologia, Extratos de algas, Cultivo de camarão, Estresse térmicoResumo
Este trabalho tinvestigou a resistência do camarão branco L. vannamei ao choque hipotérmico (CH) quando tratado com extratos das espécies de algas S. filipendula e A. nodosum, seja por banho de imersão para pós-larvas ou suplemento dietético para juvenis. Para análise da mortalidade pós-larval, pós-larvas de 17 dias de idade foram inseridas em água do mar com extrato de macroalgas nas concentrações de 20, 50, 100 e 200 mg L-1, seguido da aplicação de CH. Para análise da mortalidade juvenil, os camarões foram alimentados por 10 dias com a dieta controle ou tratamentos com extrato de macroalgas (concentrações de 0,5%, 2,0% e 4,0%), seguido da aplicação de CH. Para análise hemato-imunológica e microbiológica, os camarões foram alimentados durante 15 dias com uma dieta composta por ração acrescida de 5% das duas espécies de macroalgas ou sem, novamente seguida de CH. As amostras foram coletadas antes do início do choque térmico, imediatamente após o choque (0 h), e 1 e 24 h após o retorno à temperatura inicial. O extrato aquoso das macroalgas A. nodosum e S. filipendula nas concentrações de 100 mg L-1 e 200 mg L-1, respectivamente, melhora as taxas de sobrevivência de pós-larvas L. vannamei submetidas à CH. Para camarões juvenis, o CH causa imunodepressão significativa e reduz a comunidade bacteriana no intestino. A adição de macroalgas à ração não aumentou a taxa de sobrevivência e não afetou a microbiota intestinal de L. vannamei. No caso dos parâmetros imunológicos, ambas as espécies afetam positivamente o título de aglutinação.
Referências
Bahar, B., O’Doherty, J. V., Vigors, S., & Sweeney, T. (2016). Activation of inflammatory immune gene cascades by lipopolysaccharide (LPS) in the porcine colonic tissue ex vivo model. Clinical & Experimental Immunology, 186(2), 266-276. https://doi.org/10.1111/cei.12839
Bradford, M. M. (1976). A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Ciliberti, M. G., Albenzio, M., Annicchiarico, G., Sevi, A., Muscio, A., & Caroprese, M. (2015). Alterations in sheep peripheral blood mononuclear cell proliferation and cytokine release by polyunsaturated fatty acid supplementation in the diet under high ambient temperature. Journal of Dairy Science, 98(2), 872-879. https://doi.org/10.3168/jds.2014-8333
Cornish, M. L., & Garbary, D. J. (2010). Antioxidants from macroalgae: potential applications in human health and nutrition. Algae, 25(4), 155-171. https://doi.org/10.4490/algae.2010.25.4.155
Fan, D., Hodges, D. M., Zhang, J., Kirby, C. W., Ji, X., Locke, S. J., Critchley, A. T., & Prithiviraj, B. (2011). Commercial extract of the brown seaweed Ascophyllum nodosum enhances phenolic antioxidant content of spinach (Spinacia oleracea L.) which protects Caenorhabditis elegans againstoxidative and thermal stress. Food Chemistry, 124(1), 195-202. https://doi.org/10.1016/j.foodchem.2010.06.008
Food and Agriculture Organization (FAO) (2024a). FishStat –Global aquaculture production quantity (1950-2021). FAO. Retrieved from https://openknowledge.fao.org/items/06690fd0-d133-424c-9673-1849e414543d
Food and Agriculture Organization (FAO) (2024b). The state of world fisheries and aquaculture 2024. Blue Transformation in Action. FAO.
Gao, H., Kong, J., Li, Z., Xiao, G., & Meng, X. 2011. Quantitative analysis of temperature, salinity and pH on WSSV proliferation in Chinese shrimp Fenneropenaeus chinensis by real-time PCR. Aquaculture, 312(1-4), 26-31. https://doi.org/10.1016/j.aquaculture.2010.12.022
Gonçalves-Soares, D., Seiffert, W. Q., Schlindwein, A. D., Toledo-Silva, G., Zanette, J., Marques, M. R. F., & Bainy, A. C. D. (2012). Identification of differentially transcribed genes in shrimp Litopenaeus vannamei exposed to osmotic stress and challenged with WSSV virus. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 7(1), 73-81. https://doi.org/10.1016/j.cbd.2011.11.002
Gunalan, B., Soundarapandian, P., & Dinakaran, G. K. (2010). The effect of temperature and pH on WSSV infection in cultured marine shrimp Penaeus monodon (Fabricius). Middle-East Journal of Scientific Research, 5, 28-33
Gupta, S., & Abu-Ghannam, N. (2011). Bioactive potential and possible health effects of edible brown seaweeds. Elsevier Trends in Food Science & Technology, 22(6), 315-326. https://doi.org/10.1016/j.tifs.2011.03.011
Holdt, S. L., & Kraan, S. (2011). Bioactive compounds in seaweed: functional food applications and legislation. Journal of Applied Phycology, 23, 543-597. https://doi.org/10.1007/s10811-010-9632-5
Huang, X., Zhou, H., & Zhang, H. (2006). The effect of Sargassum fusiforme polysaccharide extracts on vibriosis resistance and immune activity of the shrimp, Fenneropenaeus chinensis. Fish & Shellfish Immunology, 20(5), 750-757. https://doi.org/10.1016/j.fsi.2005.09.008
Huynh, T. G., Yeh, S. T., Lin, Y. C., Shyu, J. F., Chen, L. L., & Chen, J. C. (2011). White shrimp Litopenaeus vannamei immersed in seawater containing Sargassum hemiphyllum var. chinense powder and its extract showed increased immunity and resistance against Vibrio alginolyticus and white spot syndrome virus. Fish & Shellfish Immunology, 31(2), 286-293. https://doi.org/10.1016/j.fsi.2011.05.014
Immanuel, G., Sivagnanavelmurugan, M., Marudhupandi, T., Radhakrishnan, S., & Palavesam, A. (2012). The effect of fucoidan from brown seaweed Sargassum wightii on WSSV resistance and immune activity in shrimp Penaeus monodon (Fab). Fish & Shellfish Immunology, 32(4), 551-564. https://doi.org/10.1016/j.fsi.2012.01.003
Kandasamy, S., Fan, D., Sangha, J. S., Khan, W., Evans, F., & Critchley, A. T. (2011). Tasco®, a product of Ascophyllum nodosum, imparts thermal stress tolerance in Caenorhabditis elegans. Marine Drugs, 9(11), 2256-2282. https://doi.org/10.3390/md9112256
Kandasamy, S., Khan, W., Evans, F., Critchley, A. T., & Prithiviraj, B. (2012). Tasco®: A product of Ascophyllum nodosum enhances immune response of Caenorhabditis elegans against Pseudomonas aeruginosa infection. Marine Drugs, 10(1), 84-105. https://doi.org/10.3390/md10010084
Kandasamy, S., Khan, W., Evans, F., Critchley, A. T., Zhang, J., Fitton, J. H., Stringer, D. N., Gardiner, V. A., & Prithiviraj, B. (2014). A fucose containing polymer-rich fraction from the brown alga Ascophyllum nodosum mediates lifespan increase and thermal-tolerance in Caenorhabditis elegans, by differential effects on gene and protein expression. Food & Function, 5(2), 275-284. https://doi.org/10.1039/C3FO60050E
Kitikiew, S., Chen, J. C., Putra, D. F., Lin, Y. C., Yeh, S. T., & Liou, C. H. (2013). Fucoidan effectively provokes the innate immunity of white shrimp Litopenaeus vannamei and its resistance against experimental Vibrio alginolyticus infection. Fish & Shellfish Immunology, 34(1), 280-290. https://doi.org/10.1016/j.fsi.2012.11.016
Kuda, T., Tsunekawa, M., Hishi, T., & Araki, Y. (2005). Antioxidant properties of dried ‘kayamo-nori’, a brown alga Scytosiphon lomentaria (Scytosiphonales, Phaeophyceae). Food Chemistry, 89(4), 617-622. https://doi.org/10.1016/j.foodchem.2004.03.020
Kumlu, M., Kumlu, M., & Türkmen, S. (2010). Combined effects of temperature and salinity on critical thermal minima of pacific white shrimp Litopenaeus vannamei (Crustacea: Penaeidae). Journal of Thermal Biology, 35(6), 302-304. https://doi.org/10.1016/j.jtherbio.2010.06.008
Le Moullac, G., & Haffner, P. (2000). Environmental factors affecting immune responses in Crustacea. Aquaculture, 191(1-3), 121-131. https://doi.org/10.1016/S0044-8486(00)00422-1
Lopes, M. M. D., de Miranda, M. R. A., Moura, C. F. H., & Eneas, J. (2012). Bioactive compounds and total antioxidant capacity of cashew apples (Anacardium occidentale L.) during the ripening of early dwarf cashew clones. Ciência e Agrotecnologia, 36(3), 325-332. https://doi.org/10.1590/S1413-70542012000300008
Maggioni, D. G., Andreatta, E. R., Hermes, E. M., & Barracco, M. A. (2004). Evaluation of some hemato-immunological parameters in female shrimp Litopenaeus vannamei submitted to unilateral eyestalk ablation in association with a diet supplemented with superdoses of ascorbic acid as a form of immune stimulation. Aquaculture, 241(1-4), 501-515. https://doi.org/10.1016/S0044-8486(03)00530-1
Marques, M. R. F., & Barracco, M. A. (2000). Lectins, as non-self recognition factors, in crustaceans. Aquaculture, 191(1-3), 23-44. https://doi.org/10.1016/S0044-8486(00)00417-8
Mattio, L., Anderson, R. J., & Bolton, J. J. (2015). A revision of the genus Sargassum (Fucales, Phaeophyceae) in South Africa. South African Journal of Botany, 98, 95-107. https://doi.org/10.1016/j.sajb.2015.02.008
Moser, J. R., Galván, D. A., Mendoza, F., Encinas, T., Coronado, D., Portillo, G., Risoleta, M., Magallón, F. J., & Hernández, L. (2012). Water temperature influences viral load and detection of White Spot Syndrome Virus (WSSV) in Litopenaeus vannamei and wild crustaceans. Aquaculture, 326-329, 9-14. https://doi.org/10.1016/j.aquaculture.2011.10.033
Mulyadi, I. N., & Wa, I. (2020). Efficacy of seaweed (Sargassum sp.) extract to prevent vibriosis in white shrimp (Litopenaeus vannamei) juvenile. International Journal of Zoological Research, 16(1), 1-11. https://doi.org/10.3923/ijzr.2020.1.11
Niu, J., Xie, J. J., Guo, T. Y., Fang, H. H., Zhang, Y. M., Liao, S. Y., Xie, S. W., Liu, Y. J., & Tian, L. X. (2019). Comparison and evaluation of four species of macroalgaes as dietary ingredients in Litopenaeus vannamei under normal rearing and WSSV challenge conditions: Effect on growth, immune response, and intestinal microbiota. Frontiers in Physiology, 9. https://doi.org/10.3389/fphys.2018.01880
O’Sullivan, L., Murphy, B., McLoughlin, P., Duggan, P., Lawlor, P. G., Hughes, H., & Gardiner, G. E. (2010). Prebiotics from marine macroalgae for human and animal health applications. Marine Drugs, 8(7), 2038-2064. https://doi.org/10.3390/md8072038
Pal, A., Kamthania, M. C., & Kumar, A. (2014). Bioactive compounds and properties of seaweeds - A review. Open Access Library Journal, 1, e752. https://doi.org/10.4236/oalib.1100752
Peixoto Jr., S., Wasielesky, W. J., & Louzada, L. J. (2003). Comparative analysis of pink shrimp Farfantepenaeus paulensis and pacific white shrimp, Litopenaeus vannamei, culture in extreme southern Brazil. Journal of Applied Aquaculture, 14(1-2), 101-111. https://doi.org/10.1300/J028v14n01_07
Ponce-Pallafox, I., Martinez-Palacios, C. A., & Ross, L. G. (1997). The effect of salinity and temperature on the growth and survival rates of juvenile white shrimp, Penaeus vannamei, Boone, 1931. Aquaculture, 157(1-2), 107-115. https://doi.org/10.1016/S0044-8486(97)00148-8
Pontinha, V. A., Vieira, F. N., & Hayashi, L. 2018. Mortality of pacific white shrimp submitted to hypothermic and hyposalinic stress. Boletim do Instituto de Pesca, 44(2), e310. https://doi.org/10.20950/1678-2305.2018.310
Rezende, P. C., Miranda, C., Fracalossi, D. M., Hayashi, L., Seiffert, W. Q., Vieira, F. N., & Schleder, D. D. (2022). Brown seaweeds as a feed additive for Litopenaeus vannamei reared in a biofloc system improved resistance to thermal stress and white spot disease. Journal of Applied Phycology, 34, 2603-2614. https://doi.org/10.1007/s10811-022-02760-9
Rezende, P. C., Soares, M., Guimarães, A. M., Coelho, J. R., Seiffert, W. Q., Schleder, D. D., & Vieira, F. N. (2021). Brown seaweeds added in the diet improved the response to thermal shock and reduced Vibrio spp. in pacific white shrimp post-larvae reared in a biofloc system. Aquaculture Research, 52, 2852-2861. https://doi.org/10.1111/are.15136
Saker, K. E., Fike, J. H., Veit, H., & Ward, D. L. (2004). Brown seaweed (Tasco; TM) treated conserved forage enhances antioxidant status and immune function in heat-stressed wether lambs. Journal of Animal Physiology and Animal Nutrition, 88(3-4), 122-130. https://doi.org/10.1111/j.1439-0396.2003.00468.x
Salehpour, R., Biuki, N. A., Mohammadi, M., Dashtiannasab, A., & Ebrahimnejad, P. (2021). The dietary effect of fucoidan extracted from brown seaweed, Cystoseira trinodis (C. Agardh) on growth and disease resistance to WSSV in shrimp Litopenaeus vannamei. Fish & Shellfish Immunology, 119, 84-95. https://doi.org/10.1016/j.fsi.2021.09.005
Samocha, T. M., Lawrence, A. L., & Bray, W. A. (1993). Design and operation of an intensive nursery raceway system for penaeid shrimp. In: McVey, J. P. (Ed.), CRC Handbook of Mariculture (vol. 1, pp. 173-210). CRC Press.
Schleder, D. D., Blank, M., Peruch, L. G. B., Poli, M. A., Gonçalves, P., Rosa, K. V., Fracalossi, D. M., Vieira, F. N., Andreatta, E. R., & Hayashi, L. (2020). Impact of combinations of brown seaweeds on shrimp gut microbiota and response to thermal shock and white spot disease. Aquaculture, 519, 734779. https://doi.org/10.1016/j.aquaculture.2019.734779
Schleder, D. D., Blank, M., Peruch, L. G. B., Vieira, F. N., Andreatta, E. R., & Hayashi, L. (2017a). Thermal resistance of Pacific white shrimp fed Sargassum filipendula: A MALDI-TOF mass spectrometry approach. Aquaculture, 481, 103-111. https://doi.org/10.1016/j.aquaculture.2017.08.028
Schleder, D. D., Rosa, J. R., Guimarães, A. M., Ramlov, F., Maraschin, M., Seiffert, W. Q., Vieira, F. N., Hayashi, L., & Andreatta, E. R. (2017b). Brown seaweeds as feed additive for white-leg shrimp: effects on thermal stress resistance, midgut microbiology, and immunology. Journal of Applied Phycololy, 29, 2471-2477. https://doi.org/10.1007/s10811-017-1129-z
Smit, A. J. (2004). Medicinal and pharmaceutical uses of seaweed natural products: A review. Journal of Applied Phycology, 16, 245-262. https://doi.org/10.1023/B:JAPH.0000047783.36600.ef
Söderhaäll, K., & Häll, L. (1984). Lipopolysaccharide-induced activation of prophenoloxidase activating system in crayfish haemocyte lysate. Biochimica et Biophysica Acta, 797(1), 99-104. https://doi.org/10.1016/0304-4165(84)90387-8
Stengel, D. B., Connan, S., & Popper, Z. A. (2011). Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnology Advances, 29(5), 483-501. https://doi.org/10.1016/j.biotechadv.2011.05.016
Thanigaivel, S., Chandrasekaran, N., Mukherjee, A., & Thomas, J. (2016). Seaweeds as an alternative therapeutic source for aquatic disease management. Aquaculture, 464, 529-536. https://doi.org/10.1016/j.aquaculture.2016.08.001
Thanigaivel, S., Vijayakumar, S., Mukherjee, A., Chandrasekaran, N., & Thomas, J. (2014). Antioxidant and antibacterial activity of Chaetomorpha antennina against shrimp pathogen Vibrio parahaemolyticus. Aquaculture, 433, 467-475. https://doi.org/10.1016/j.aquaculture.2014.07.003
Van Wyk, P., & Scarpa, J. (1999). Water quality requirements and management. In: Van Wyk, P., Davis- Hodgkins, M., Laramore, R., Main, K. L., Mountain, J., & Scarpa, J. (Eds.), Farming marine shrimp in recirculating freshwater systems (pp. 128-138). Florida Department of Agriculture and Consumer Services.
Xu, Z., Guan, W., Xie, D., Lu, W., Ren, X., Yuan, J., & Mao, L. (2019). Evaluation of immunological response in shrimp Penaeus vannamei submitted to low temperature and air exposure. Developmental and Comparative Immunology, 100, 103413. https://doi.org/10.1016/j.dci.2019.103413
Yan, P., Lin, C., He, M., Zhang, Z., Zhao, Q., & Li, E. (2022). Immune regulation mediated by JAK/STAT signaling pathway in hemocytes of Pacific white shrimps, Litopenaeus vannamei stimulated by lipopolysaccharide. Fish & Shellfish Immunology, 130, 141-154. https://doi.org/10.1016/j.fsi.2022.07.048
Yeh, S. T., Lee, C. S., & Chen, J. C. (2006). Administration of hotwater extract of brown seaweed Sargassum duplicatum via immersion and injection enhances the immune resistance of white shrimp Litopenaeus vannamei. Fish & Shellfish Immunology, 20(3), 332-345. https://doi.org/10.1016/j.fsi.2005.05.008
Zhang, Z., Shi, X., Wu, Z., Wu, W., Zhao, Q., & Li, E. (2023). Macroalgae Improve the Growth and Physiological Health of White Shrimp (Litopenaeus vannamei). Aquaculture Nutrition, 8829291. https://doi.org/10.1155/2023/8829291
Wang, H., Wan, X., Xie, G., Xuan, D., Wang, X., & Huang, J. (2020). Insights into the histopathology and microbiome of Pacific white shrimp, Penaeus vannamei, suffering from white feces syndrome. Aquaculture, 527, 735447.https://doi.org/10.1016/j.aquaculture.2020.735447
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2024 Vitor de Almeida Pontinha, Delano Dias Schleder, Walter Quadros Seiffert, Carmen Simioni, Felipe do Nascimento Vieira, Leila Hayashi
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.