Copper and cadmium accumulation in gills and muscular tissue of tilapia (Oreochromis niloticus) under experimental conditions

Authors

  • Maria Amália da Silva SANTAROSSA Universidade de São Paulo -  USP, Centro de Energia Nuclear na Agricultura http://orcid.org/0000-0001-5731-1545
  • Diogo Barcot TINTOR Universidade Estadual Paulista -  UNESP, Centro de Estudos Ambientais
  • Thiago de Araújo DOURADO Universidade Estadual Paulista -  UNESP, Centro de Estudos Ambientais
  • César Augusto Degiatto JOTTA Universidade de São Paulo -  USP, Escola Superior de Agricultura “Luiz de Queiroz” -  ESALQ, Programa de Pós-graduação em Estatí­­stica e Experimentação Agronômica http://orcid.org/0000-0003-2105-8677
  • Amauri Antônio MENEGÁRIO Universidade Estadual Paulista -  UNESP, Centro de Estudos Ambientais
  • José Roberto FERREIRA Agência Paulista de Tecnologia do Agronegócio -  APTA, Pólo Regional Centro Sul / Universidade de São Paulo -  USP, Centro de Energia Nuclear na Agricultura

DOI:

https://doi.org/10.20950/1678-2305.2018.332

Keywords:

Bioaccumulation, Copper, Cadmium, Chronic toxicity, Oreochromis niloticus

Abstract

The world wide use of tilapia for different approaches in fish bioassay was exploited to assess the accumulation of copper and cadmium, in isolated forms and in combination in gills and muscular tissue in the specie Oreochromis niloticus, which is of economical relevance in fish consumption in the Sao Paulo State, Brazil. To reach for these goals, semi-static chronic toxicity tests were carried out during 21 days by using two dissolved concentrations of each trace element as follow: LC50/10 and the average of LC50/10 and LC50/100. Fish samplings to assess for the kinetic trace element absorptions with time were performed at 24, 96 hours, 7, 14 and 21 days. After 14 days of exposure gills had higher concentrations for both elements (5.20 mg Kg-1 Cu and 4.89 mg kg-1 Cd), than the muscular tissue (0.79 mg Kg-1 Cu e 0.32 mg Kg-1 Cd). A competition for absorption was established when both elements were in combination, being the maximum absorbed concentrations, 1.81 mg Kg-1 Cu and 1.54 mg Kg-1 Cd for the gills and 0.63 mg Kg-1 Cu and 0.12 mg Kg-1 Cd for the muscular tissue. The Tukey test used for the statistical evaluation of the exposure period times dissolved metal concentration interactions revealed the interference of the basal Cd and Cu contents of the fish on the results. Despite the verified bioaccumulation, in which BCF for Cd were lower than the BCF for Cu, the fractions of the LCs50 were not lethal to the fish. Tilapia did not concentrate Cu and Cd in the edible tissue at concentrations to bring restrictions for human consumption.

References

ABDEL-BAKI, A.S.; DKHIL, M.A.; AL-QURAISHY, S. 2011 Bioaccumulation of some heavy metals in tilapia fish relevant to their concentration in water and sediment of Wadi Hanifah, Saudi Arabia. African Journal of Biotechnology, 10(13): 2541-2547.

AGAH, H.; LEERMAKERS, M.; ELSKENS, M.; FATEMI, M.R.; BAEYENS, W. 2009 Accumulation of trace metals in the muscle and liver tissues of five fish species from the Persian Gulf. Environmental Monitoring and Assessment, 157(1-4): 499-514.

AGí­Å NCIA NACIONAL DE VIGILÂNCIA SANITÁRIA í  ANVISA, 1998 PORTARIA nº 685 de 27 de agosto de 1998. Dispõe sobre os princí­­pios gerais para o estabelecimento de ní­­veis máximos de contaminantes quí­­micos em alimentos. Diário Oficial da União, Brasí­­lia, 24 de setembro de 1998, nº. 183, Seção 1, p. 3.

ALMEIDA, J.A.; NOVELLI, E.L.B.; SILVA, M.D.P.; JUNIOR, R.A. 2001 Environmental cádmium exposure and metabolic responses of the Nile tilapia, Oreochromis niloticus. Environmental Pollution, 114(2): 169-175, 2001.

ASSOCIAÇÃO BRASILIERA DE NORMAS TÉCNICAS - ABNT. 1984 NBR 5761 Determinação da dureza em água (Método Complexométrico). Rio de Janeiro.

ASSOCIAÇÃO BRASILIERA DE NORMAS TÉCNICAS - ABNT. 2011 NBR 15088 Ecotoxicologia aquática í  Toxicidade aguda í  Método de ensaio em peixes. Rio de Janeiro.

ASSOCIAÇÃO BRASILIERA DE NORMAS TÉCNICAS - ABNT. 2016 NBR 15499 Ecotoxicologia aquática í  Toxicidade crônica de curta duração í  Método de ensaio com peixes. Rio de Janeiro.

ATLI, G.; CANLI, M. 2008 Responses of metallothionein and reduced glutathione in a freshwater fish Oreochromis niloticus following metal exposures. Environmental Toxicology and Pharmacology, 25(1): 33í 38.

AZEVEDO, F.A.; CHASIN, A.A.M. 2003 As bases toxicológicas da ecotoxicologia. São Carlos: RiMa. 340p.

BARBIERI, E.; RUÍZ-HIDALGO, K.; REZENDE, K.F.O.; LEONARDO, A.F.G.; SABINO, F.P. 2017 Efectos del carbofuran en juveniles de Oreochromis niloticus en la toxicidad, metabólica de rutina y los parámetros hematológicos. Boletim do Instituto de Pesca, 43(4): 513-526.

BARBIERI, E.; CAMPOS-GARCIA, J.; MARTINEZ, D.S.T.; DA SILVA, J.R.M.C.; ALVES, O.L.; REZENDE, K.F.O. 2016 Histopathological Effects on Gills of Nile Tilapia (Oreochromis niloticus, Linnaeus, 1758) Exposed to Pb and Carbon Nanotubes. Microscopy and Microanalysis, 22(6):1162-1169.

BENLI, C.K.; Kí­–KSAL, G. 2005 The acute toxicity of ammonia on tilapia (Oreochromis niloticus L.) larvae and fingerlings. Turkish Journal of Veterinary and Animal Sciences, 29(2): 339-344.

BOMBAIL, V.; DENNIS, A.W.; GORDON, E.; BATTY, J. 2001 Application of the comet and micronucleus assays to butterfish (Pholis gunnellus) erythrocytes from the Firth of Forth, Scotland. Chemosphere, 44(3): 383-392.

BRASIL, 1965 DECRETO nº. 55.871, de 26 de março de 1965. Dispõe sobre as normas reguladoras do emprego de aditivos para alimentos. Diário Oficial da União, Brasí­­lia, 09 de abril de 1965, Seção 1, p. 3610.

BUFFLE, J.; De VITRE, R.R. 1994. Chemical and Biological Regulation of Aquatic Systems. CRC Press, Boca Raton, Florida. 312p.

CHOWDHURY, S.; MAZUMDER, M.A.; AL-ATTAS, O.; HUSAIN, T. 2016 Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Science of the Total Environment, 569-570(único): 476-488.

í­"¡OÄžUN, H.Y.; KARGIN, F. 2004 Effects of pH on the mortality and accumulation of copper in tissues of Oreochromis niloticus. Chemosphere, 55(2): 277í 282.

í­"¡OÄžUN, H.Y.; Yí­Å“ZEREROÄžLU, T.A.; KARGIN, F. 2003 Accumulation of copper and cadmium in small and large Nile Tilapia Oreochromis niloticus. Bulletin of Environmental Contamination and Toxicology, 71(6): 1265-1271.

CONSELHO NACIONAL DO MEIO AMBIENTE í  CONAMA, 2011 Resolução nº 430, de 13 de Maio de 2011. Dispõe sobre condições e padrões de lançamento de efluentes. Diário Oficial da União, Brasí­­lia, 16 de Maio de 2011, nº 92, p.89.

DAMATO, M.; BARBIERI, E. 2012 Estudo da Toxicidade aguda e alterações metabólicas provocadas pela exposição do Cádmio sobre o peixe Hyphessobrycon callistus utilizado como indicador de saúde ambiental. O Mundo da Saúde, 36(4): 574-581.

DE CONTO CINIER, C.; PETIT-RAMEL, M.; FAURE, R.; GARIN, D. 1997 Cadmium bioaccumulation in Carp (Cyprinus carpio) tissues during long-term high exposure: analysis by inductively coupled plasma-mass spectrometry. Ecotoxicology and Environmental Safety, 38(2): 137-143.

DIAS, D.C.; MAIORINO, F.C.; RANZANI-PAIVA, M.J.T.; ISHIKAWA, N.M.; LOMBARDI, J.V.; FERREIRA, J.R.; FRANí­"¡CA, F.M.; FERREIRA, C.M. 2007 Avaliação Histopatológica do Baço, Coração e Encéfalo De Tilápia Oreochromis niloticus (LINNAEUS, 1758) Exposta ao Cloreto de Mercúrio. Boletim do Instituto de Pesca, 33(2): 213-220.

EPA, 2002 Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. 5th Edn., EPA, Washington DC, USA.
ERCAL, N.; GURER-ORHAN, H.; AYKIN-BURNS, N. 2001 Toxic metals and oxidative stress. Part I. Mechanisms involved in metal-induced oxidative damage. Current Topics in Medicinal Chemistry, 1(6): 529í 539.

EVANS, J.J.; PASNIK, D.J.; BRILL, G.C.; KLESIUS, P.H. 2006 Un-ionized ammonia exposure in Nile tilapia: Toxicity, stress response, and susceptibility to Streptococcus agalactiae. North American Journal of Aquaculture, 68(único): 23-33.

FERREIRA, J.R.; LAWLOR, A.J.; BATES, J.M.; CLARKE, K.J.; TIPPING, E. 1997 Chemistry of riverine and estuarine suspended particles from the Ouse-Trent system. Aquatic Colloid and Surface Chemistry, 120(1-3): 183-198.

GARCIA-SANTOS, S.; FONTAINHAS-FERNANDES, A.; WILSON, J.M. 2006 Cadmium tolerance in the nile tilapia (Oreochromis niloticus) following acute exposure: assessment of some ionoregulatory parameters. Environmental Toxicology, 21(1): 36-46.

GARCIA-SANTOS, S.; MONTEIRO, S.M.; CARROLA, J.; FONTAINHASFERNANDES, A. 2007 Alterações histológicas em brí­¢nquias de tilápia nilotica Oreochromis niloticus causadas pelo cádmio. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 59(2): 376-381.

GIRÓN-PÉREZ, M.I.; SANTERRE, A.; GONZALEZJAIME, F.; CASAS-SOLIS, J.; HERNANDÉZCORONADO, M.; PEREGRINA-SANDOVAL, J.; TAKEMURA, A.; ZAITSEVA, G. 2007 Immunotoxicity and hepatic function evaluation in Nile tilapia (Oreochromis niloticus) exposed to diazinon. Fish and Shellfish Immunology, 23(4): 760-769.

HUANG, Z.Y.; ZHANG, Q.; CHEN, J.; ZHUANG, Z.X.; WANG, X.R. 2007 Bioaccumulation of metals and induction of metallothioneins in selected tissues of common carp (Cyprinus carpio L.) co-exposed to cadmium, mercury and lead. Applied Organometallic Chemistry, 21(2): 101-107.

KALAY, M.; ERDEM, C. 2003 Effect of cadmium accumulation on total protein levels in Tilapia nilotica. Turkish Journal of Veterinary and Animal Science, 27(único): 1367-1374.

KEHRIG, H.A.; MALM, O.; PALERMO, E.F.A.; SEIXAS, T.G.; BAí­Å TA, A.P.; MOREIRA, I. 2011 Bioconcentração e biomagnificação de metilmercúrio na Baí­­a de Guanabara, Rio de Janeiro. Quí­­mica Nova, 34(3): 377-384.

LINS, J.A.P.N.; KIRSCHNIK, P.G.; QUEIROZ, V.S.; CIRIO, S.M. 2010. Uso de peixes como biomarcadores para monitoramento ambiental aquático. Revista Acadêmica Ciências Agrárias e Ambientais, 8(4): 469-484.

MAGALHíES, D.P.; FILHO, A.S.F. 2008 A ecotoxicologia como ferramenta no biomonitoramento de ecossistema aquáticos. Oecologia Brasiliensis, 12(3): 355-381.

MCGEER, J.C.; SZEBEDINSZKY, C.; MCDONALD, D.G.; WOOD, C.M. 2000a Effects of chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout 1: iono-regulatory disturbance and metabolic costs. Aquatic Toxicology, 50(3): 231-243.

MCGEER, J.C.; SZEBEDINSZKY, C.; MCDONALD, D.G.; WOOD, C.M. 2000b Effects of chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout 2: tissue specific metal accumulation. Aquatic Toxicology, 50(3): 245-256.

NAKAYAMA S.M.; IKENAKA, Y.; MUZANDU, K.; CHOONGO, K.; OROSZLANY, B.; TERAOKA, H.; MIZUNO, N.; ISHIZUKA, M. 2010 Heavy metal accumulation in lake sediments, fish (Oreochromis niloticus and Serranochromis thumbergi), and crayfish (Cherax quadricarinatus) in Lake Itezhi-tezhi and Lake Kariba, Zambia. Archives of Environmental Contamination and Toxicology, 59(2): 291í 300.

NOGAMI, E.M.; KIMURA, C.C.; RODRIGUES, C.; MALAGUTTI, A.R.; LENZI, E.; NOZAKI, J. 2000 Effects of dietary cadmium and its bioconcentration in tilapia Oreochromis niloticus. Ecotoxicology and Environmental Safety, 45(3): 291-295.

NOLI, F.; TSAMOS, P. 2016 Concentration of heavy metals and trace elements in soils, waters and vegetables and assessment of health risk in the vicinity of a lignite-fired power plant. Science of the Total Environmental, 563-564(único): 377-385.

RASHED, M.N. 2001 Monitoring of environmental heavy metals in fish from Nasser Lake. Environment International, 27(1): 27-33.

REIS, B.F.; VIEIRA, J.A.; KRUG, F.J.; GINÉ, M.F. 1997 Development of a flow injection system with two analytical paths for ammonium determination in soil extracts by conductometry. Journal of the Brazilian Chemical Society, 8(5): 523-528.

REPULA, C. M. M.; CAMPOS, B.K.; GANZAROLLI, E.M.; LOPES, M.C.; QUINÁIA, S.P. 2012 Biomonitoramento de Cr e Pb em peixes de água doce. Quí­­mica Nova, 35(5): 905-909.

SANTOS, D.B.; BARBIERI, E.; BONDIOLI, A.C.V.; MELO, C.B. 2014 Effects of Lead in white shrimp (Litopenaeus schmitti) metabolism regarding salinity. O mundo da Saúde, 38(1): 16-23.

SARAVI, S.S.S.; SHOKRZADEH, M. 2013 Heavy metals contamination in water and three species of most consumed fish sampled from Caspian Sea. Environmental Monitoring and Assessment, 185(12): 10333-10337.

SARI, S.H.J.; IRANAWATI, F.; CHOTIMAH, N and YUNITA, D.E. 2016. Bioconcentration of Heavy Metal Cu in Different Tissues of Milkfish [Channos channos (Forsskal, 1775)] in Ujung Pangka Gresik, East Java, Indonesia. Aquatic Procedia 7(2016): 236 í  241.

SILVA FILHO, M.V.; OLIVEIRA, M.N.; CUNHA BASTOS, V.L.F.; ALVES, M.V.; CUNHA BASTOS, J. 2000 Validação de espécies sentinelas por biomarcação com 74 colinesterase em peixes. In: ESPINDOLA, E.L.G.; PASCHOAL, C.M.B.; ROCHA, O.; BOHRER, M.B.C.; OLIVEIRA NETO, A.L. Ecotoxicologia: perspectiva para o séc. XXI. São Carlos, RiMa. p. 147-164.

SILVA, M.A.; MOTTA, T.C.S.; TINTOR, D.B.; DOURADO, T.A.; ALCÂNTARA, A.L.; MENEGÁRIO, A. A.; FERREIRA, J.R. 2017 Tilapia (Oreochromis niloticus) as a biondicator of copper and cadmium toxicity. A bioavailability approach. Journal of the Brazilian Chemical Society, 28(1): 143-151.

TAO, Y.; YUAN Z.; XIAONA, H.; WEI, M. 2012 Distribution and bioaccumulation of heavy metals in aquatic organisms of different trophic levels and potential health risk assessment from Taihu lake, China. Ecotoxicology and Environmental Safety, 81(único): 55-64.

TUNDISI, J. G.; TUNDISI, T. M. 2008 Limnologia. 1º ed. São Paulo: Oficina de Textos. 632p.

VIRGA, R.H.P.; GERALDO, L.P.; SANTOS, F.H. 2007 Assessment of heavy metal contamination in blue crab specimens. Revista Ciência e Tecnologia de Alimentos, 27(4): 779-785.

VISNJIC-JEFTIC, Z.; JARIC, I.; JOVANOVIC, L.; SKORIC, S.; SMEDEREVAC-LALIC, M.; NIKCEVIC, M.; LENHARDT, M. 2010 Heavy metal and trace element accumulation in muscle, liver and gills of the Pontic shad (Alosa immaculate Bennet 1835) from the Danube River (Serbia). Microchemical Journal, 95(2): 341-344.

ZAGATO, P.A.; BERTOLETTI, E. 2008 Ecotoxicologia aquática í  princí­­pios e aplicações. São Carlos: RiMa. 486p.

Downloads

Published

2018-12-23

Most read articles by the same author(s)