METABOLIC AND HISTOLOGICAL ALTERATIONS AFTER EXPOSING Deuterodon iguape TO DIFFERENT SALINITIES

Authors

  • Edison BARBIERI Instituto de Pesca, Agência Paulista de Tecnologia dos Agronegócios, Secretaria de Agricultura e Abastecimento do Estado de São Paulo http://orcid.org/0000-0002-7423-3726
  • Karina Fernandes Oliveira REZENDE Laureate International Universities http://orcid.org/0000-0002-7284-4443
  • Julia Schulz CARNEIRO Instituto de Pesca, Agência Paulista de Tecnologia dos Agronegócios, Secretaria de Agricultura e Abastecimento do Estado de São Paulo
  • Marcelo Barbosa HENRIQUES Instituto de Pesca, Agência Paulista de Tecnologia dos Agronegócios, Secretaria de Agricultura e Abastecimento do Estado de São Paulo http://orcid.org/0000-0003-1419-9121

DOI:

https://doi.org/10.20950/1678-2305.2019.45.2.410

Keywords:

live bait, oxygen consumption, excretion of ammonia, hematology, gills, kidney

Abstract

The decrease of the live bait stock for the sport fishing, in estuarine and marine environments, has stimulated studies looking for species tolerant to the different salinities. Lambari Deuterodon iguape Eigenmann, 1907 has been widely used as live bait in Brazilian estuaries has a significant market and being a native animal to Brazil, it becomes a promising substitute. In order to analyze tolerance, the objective was to evaluate routine metabolism (oxygen consumption and ammonia excretion), hematological parameters (glucose, hemoglobin and total proteins), and histological parameters (gills and kidneys) of D. iguape after exposure to different salinities. The data were evaluated according to the means and standard deviations obtained by ANOVA (one-way) analysis followed by the Tukey post-test, after verification of the normal distributions (Kolmogorov-Smirnov test) and homoscedasticity (Levene test), p<0.05. In the higher salinities (12.5) tested, increased oxygen consumption, serum glucose, hemoglobin levels, decreased ammonia and total protein excretion were observed. It was concluded that 1 hour of exposure to different salinities, changes the metabolism of D. iguape, characterized by increased oxygen consumption and decreased ammonia excretion. Changes in hematological parameters (serum glucose, hemoglobin, and total protein) are also observed in groups exposed in the higher salinities (7.5, 10 and 12.5). Gill and kidney histological alterations were classified as mild to moderate, showing that D. iguape adapted well to the saline environment, which can make its use as live bait possible in estuarine sport fishing, preserving the natural stocks of Litopenaeus schimitti shrimp.

References

Arlinghaus, R.; Cooke, S.J. 2009. Recreational fisheries: socioeconomic importance, conservation issues and management challenges. Recreational hunting, conservation and rural livelihoods: science and practice. Blackwell Publishing, pp. 38-56 (United Kingdom).

Aranishi, F.; Mano, N. 2000. Antibacterial cathepsins in different types of ambicolored Japanese flounder skin. Fish and Shellfish Immunology, 10(1): 87-89.

Baldisserotto, B. 2009. Fisiologia de Peixes Aplicada í­Â  Piscicultura. Santa Maria: UFSM, 211p.

Barbieri, E.; Ngan, P.V.; Gomes, V. 1998. Efeito do DSS, dodecil sulfato de sódio, no metabolismo a na capacidade de natação de Cyprinus Carpio. Revista Brasileira de Biologia, 58(2): 263-272.

Barbieri, E.; Branco, J.O.; Ferrão, M.C.; Hidalgo, K.R. 2013. Effects of Cadimium and Zinc on Oxygen consumption and ammonia excretion of the sea-bob shrimp, according to temperature. Boletim do Instituto de Pesca 39(3): 299-309.

Barbieri, E.; Vigliar Bondioli, A.C.; Batista de Melo, C.; Henriques, B. M. 2014. Effects of low salinity on juvenile pink shrimp Farfantepenaeus paulensis (Perez-Farfante 1967, Crustacea). Marine and Freshwater Behaviour and Physiology, 47(4): 273-283.

Barbieri, E.; Campos-Garcia, J.; Martinez, D.S.T.; Alves, O.L.; Rezende, K.F.O. 2016. Histopathological effects on gills of Nile Tilapia (Oreochromis niloticus, Linnaeus, 1758) Exposed to Pb and Carbon Nanotubes.
Microscopy and Microanalysis, 22(6): 1162-1169.

Barros, L.C.; Alves, P.M.F.; Silva, N.J.R.; Henriques, M.B. 2014. Cadeia produtiva do camarão branco utilizado como isca-viva na pesca amadora da Baixada Santista, Estado de São Paulo. Informações Econômicas 44(6): 23-35.

Bombardeli, R.A.; Meurer, F.; Syperrick, A. 2003. Metabolismo proteico em peixes. Arquivos de Ciências Veterinárias e Zoologia da UNIPAR, 7(1): 69-79.

Bosisio, F.; Rezende, K.F.O.; Barbieri, E. 2017. Alterations in the hematological parameters of Juvenile Nile Tilapia (Oreochromis niloticus) submitted to different salinities. Pan-American Journal of Aquatic Sciences, 12(1): 146-154.

Boyd, C.E.; Tucker, C.S. 1998. Pond Aquaculture Water Quality Management. Boston: Kluwer Academic Publ. 700p.

Boyce, S.J. 1999. Nitrogenous excretion in the Antarctic plunderfish. Journal of Fish Biology 54(1): 72-81.

Brennan, R.S.; Hwang, R.; Tse, M.; Fangue, N.A.; Whitehead, A. 2016. Local adaptation to osmotic environment in killifish, Fundulus heteroclitus, is supported by divergence in swimming performance but not by differences in excess post-exercise oxygen consumption or aerobic scope. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 196(1): 11-19.

Campos-Garcia, J.; Martinez, D.S.T.; Rezende, K.F.O.; Silva, J.R.M.C.; Alves, O.L.; Barbieri, E. 2016. Histopathological alterations in the gills of Nile tilapia exposed to carbofuran and multiwalled carbon nanotubes. Ecotoxicology and Environmental Safety, 133: 481-488.

Carlton, J.T. 2001. Introduced species in US coastal waters: environmental impacts and management priorities. Arlington, Virginia: Pew Ocean Commission. 28p.

Carmona, R.M.; Garcí­­a Gallego, A.; Sanz, A.; Domezain, M.V. 2004. Chloride cells and pavement cells in gill epithelia of Acipenser naccarii: ultrastructural modifications in seawater-acclimated specimens. Journal of Fish Biology, 64(2): 553-556.

Centeno, L.; Silva-Acuí­±a, R.; Barrios, R.; Lugo, R.S.; Matut, C.; Pérez, J.L. 2007. Hematological characteristics of cachama (Colossoma macropomum) in three phases of the growth in Delta Amacuro, Venezuela. Zootecnia Tropical, 25: 237-243

Chaves, P.T.C.; Robert, M.C. 2003. Embarcações, artes e procedimentos da pesca artesanal no litoral sul do Estado do Paraná, Brasil. Atlí­¢ntica, 25(1): 53-59.

Christensen, J.B.; Jensen, D.L.; Grí­¸n, C.; Filip, Z.; Christensen T.H. 1998. Characterization of the dissolved organic carbon in landfill leachate-polluted groundwater. Water Research, 32: 125-135.

Cooke, S.J.; Cowx, I.G. 2004. The role of recreational fishing in global fish crises. BioScience, 54: 857-859.

Damato, M.; Barbieri, E. 2012. Study on the acute toxicity and metabolic changes caused by cadmium exposure on the fish Hyphessobrycon Callistus used as an indicator of environmental health. Mundo da Saúde, 36(4): 574-581

Demers, N.E.; Bayne, C.J. 1997. The immediate effects of stress on hormones and plasma lysozyme in rainbow trout. Developmental and Comparative Immunology, 21(4): 63-73.

Drabkin, D.L. 1949. A simplified technique for a large scale crystallization of human oxyhemoglobin; isomorphous transformations of hemoglobin and myoglobin in the crystalline state. Archives of Biochemistry and Biophysics, 21(1): 224-232.

Erkmen, B.; Kolankaya, D. 2000. Effects of water quality on epithelial morphology in the gill of Capoeta tinca living in two tributaries of Kızılırmak River, Turkey. Bulletin of Environmental Contamination and Toxicology, 64(3): 418-425.

FAO Recreational Fisheries- Technical Guidelines for Responsible Fisheries 2012. [accessed 2014 Mar 14]. http://www.fao.org/docrep/016/i2708e/i2708e00.htm.

Fernandes, M.N.; Mazon, A.D.F. 2003. Environmental pollution and fish gill morphology. Fish Adaptations. Enfield: Science Publishers, pp. 203-231.

Freire, C.A.; Amado, E.M.; Souza, L.R.; Veiga, M.P.T.; Vitule, J.R.S.; Souza, M.M.; Prodocimo, V. 2008. Muscle water control in crustaceans and fishes as a function of habitat, osmoregulatory capacity, and degree of euryhalinity. Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology, 149(4): 435-446.

Freire, K.M.; Machado, M.L.; Crepaldi, D. 2012. Overview of inland recreational fisheries in Brazil. Fisheries, 37(11): 484-494.

Freire, K.M.F. 2010. Unregulated catches from recreational fisheries off northeastern Brazil. Atlí­¢ntica 32(1): 87-93.

González, F.H.D.; Silva, S.C. 2006. Introdução í­Â  bioquí­­mica clí­­nica veterinária. UFRGS, 538p. (Porto Alegre).

Henriques, M.B.; Fagundes, L.; Petesse, M.L.; Rezende, K.F.O.; Barbieri, E. 2018. Lambari fish Deuterodon iguape Eigenmann, 1907 as an alternative to live bait for estuarine recreational fishing. Fisheries Management and Ecology, 25(5): 400-407.

Kamal, A.H.M.M.; Mairb, G.C. 2005. Salinity tolerance in superior genotypes of tilapia, Oreochromis niloticus, Oreochromis mossambicus and their hybrids. Aquaculture, 247(1-4): 189-201.

Lisboa, V.; Barcarolli, I.F.; Sampaio, L.A.; Bianchini, A. 2015. Effect of salinity on survival, growth and biochemical parameters in juvenile Lebranch mullet Mugil liza (Perciformes: Mugilidae). Neotropical Ichthyology, 13(2): 447í 452.

McCormick, S.D. 1995. Hormonal control of gill Na+, K+ -ATPase and chloride cell function. Fish Physiology, 14: 285-315.

Motta, F.S.; Mendonça, J.T.; Moro, P.S. 2016. Collaborative assessment of recreational fishing in a subtropical estuarine system: a case study with fishing guides from south-eastern Brazil. Fisheries Management and Ecology, 23(3-4): 291-302.

Nero, V.; Farwell, A.; Lister, A.; Van Der Kraak, G.; Lee, L.E.J.; Van Meer, T., MacKinnon, M.D.; Dixon, D.G. 2006. Gill and liver histopathological changes in yellow perch (Perca flavescens) and goldfish (Carassius auratus) exposed to oil sands process-affected water. Ecotoxicology and Environmental Safety, 63(3): 365-377.

Ostrensky, A.; Boeger, W.A.; Chammas, M.A. 2008. Potencial para o desenvolvimento da aqüicultura no Brasil. In: Ostrensky, A.; Borghetti, J.R.; Soto, D. Aquicultura no Brasil: o desafio é crescer. SEAP, pp,159-182 (Brasí­­lia).

Patterson, J.; Bodinier, C.; Green, C. 2012. Effects of low salinity media on growth, condition, and gill ion transporter expression in juvenile Gulf killifish, Fundulus grandis. Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology, 161: 415-421.

Pereira, D.S.P.; Guerra-Santos, B.; Moreira, E.L.T.; Albinati, R.C.B.; Ayres, M.C.C. 2016. Parí­¢metros hematológicos e histológicos de tilápia do nilo em resposta ao desafio de diferentes ní­­veis de salinidade. Boletim do Instituto de Pesca, 42(3): 635-647.

Perry, S.F.; Laurent, P. 1993. Environmental effects on fish gill structure and function. In Fish ecophysiology. Springer, pp. 231-264 (Netherlands).

Poleksic, V.; Mitrovic-Tutundzic, V. 1994. Fish gills as a monitor of sublethal and chronic effects of pollution. In: Muller R., Lloyd R. Sulethal and chronic effects of pollutants on freshwater fish. FAO, pp. 339-352 (Rome).
Ranzani-Paiva, M.J.T.; Pádua, S.B.; Tavares-Dias, M., Egami, M.I. 2013. Métodos para análise hematológica em peixes. Maringá: EDUEM, 140p.

Rezende, K.F.O.; Santos, R.M.; Borges, J.C.S.; Salvo, L.M.; Silva, J.R.M.C. 2014. Histopathological and genotoxic effects of pollution on Nile Tilapia (Oreochromis niloticus, Linnaeus, 1758) in the Billings Reservoir (Brazil). Toxicology Mechanisms and Methods, 24(6): 404-411.

Rezende, K.F.O.; Bergami, E.; Alves, K.V.B.; Corsi, I.; Barbieri, E. 2018. Titanium dioxide nanoparticles alters routine metabolism and causes histopathological alterations in Oreochromis niloticus. Boletim do Instituto de Pesca, 44(2): 343-343.

Sakamoto, T.; Kozaka, T.; Takahashi, A.; Kawauchi, H.; Ando, M. 2001. Medaka (Oryzias latipes) as a model for hypoosmoregulation of euryhaline fishes. Aquaculture, 193(3): 347-354.

Santos, J.L.D.; Severino-Rodrigues, E.; Vaz-Dos-Santos, A.M. 2008. Estrutura populacional do camarão-branco Litopenaeus schmitti nas regiões estuarina e marinha da Baixada Santista, São Paulo, Brasil. Boletim do Instituto de Pesca, 34(3): 375-389.

Schwaiger, J.; Wanke, R.; Adam, S.; Pawert, M.; Honnen, W.; Triebskorn, R. 1997. The use of histopathological indicators to evaluate contaminant-related stress in fish. Journal of Aquatic Ecosystem Stress and Recovery, 6(1): 75-86.

Silva, N.J.R.; Lopes, M.C.; Gonçalves, F.H.A.S.B.; Gonsales, G.Z.; Henriques, M.B. 2011. Avaliação do potencial do mercado consumidor de lambari da Baixada Santista. Informações Econômicas, 41(12): 5-13.

Singer, M.A. 2001. Ammonia functions as a regulatory molecule to mediate adjustments in glomerular filtration rate in response to changes in metabolic rate. Medical Hypotheses, 57(6): 740-744.

Soares, D. 2001. Pesca Amadora Brasil. São Paulo: Livraria Nobel. 312p.
Takashima, F.; Hibya, T. 1995. An atlas of fish histology: normal and pathological features. Tokyo: Kodansha. 195p.

Thophon, S.M.; Kruatrachue, E.S.; Upathan, P.; Pokethitiyook, S.; Sahaphong, S.; Jarikhuan, S. 2003.
Histopathological alterations of white seabass, Lates calcarifer in acute and subchronic cadmium exposure. Environmental pollution, 121(3): 307-320.

Tonks, D.B. 1983. Principles and technics. Clinical Chemistry, 9: 217í 223.

Tsuzuki, M.Y.; Sugai, J.K.; Maciel, J.C.; Francisco, C.J.; Cerqueira, V.R. 2007. Survival, growth and digestive enzyme activity of juveniles of the fat snook (Centropomus parallelus) reared at different salinities. Aquaculture, 271: 319-325.

Uchida, K.; Kaneko, T.; Miyazaki, H.; Hasegawa, S.; Hirano, T. 2000. Excellent salinity tolerance of Mozambique tilapia (Oreochromis mossambicus): elevated chloride cell activity in the branchial and opercular epithelia of the fish adapted to concentrated seawater. Zoological Science, 17: 149-160.

Urbina, M.A.; Schulte, P.M.; Bystriansky, J.S.; Glover, C.N. 2012. Differential expression of Na+, K+-ATPase α-1 isoforms during seawater acclimation in the amphidromous galaxiid fish Galaxias maculatus. Journal of Comparative Physiology B., 183(3):345-357.

Urbina, M.A.; Glover, C.N. 2015. Effect of salinity on osmoregulation, metabolism and nitrogen excretion in the amphidromous fish, inanga (Galaxias maculatus). Journal of Experimental Marine Biology and Ecology, 473(C): 7-15.

Valladão, G.M.R.; Gallani, S.U.; Pilarski, F. 2016. South America fish for continental aquaculture. Reviews in Aquaculture, 10(2): 1-19.

Xiong, D.; Fang, T.; Yu, L.; Sima, X.; Zhu, W. 2011. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Science of the Total Environment, 409(8): 1444-1452.

Westers, H. 2001. Fish hatchery management. 2nd Edition. Bethesda: American Fisheries Society. 751p.

Wilson, J.M.; Laurent, P. 2002. Fish Gill Morphology: Inside out. Journal of Experimental Zoology, 293(3): 192-213.

Wintrobe, M.M. 1978. Clinical haematology. London: H. Kimpton Press, pp. 448.

Wood, C.M.; Pí­¤rt, P. 1997. Cultured branchial epithelia from freshwater fish gills. The Journal of Experimental Biology, 200: 1047-1059.

Downloads

Published

2019-03-26

Most read articles by the same author(s)

1 2 3 4 > >>