ZOOTECHNICAL PERFORMANCE EVALUATION OF THE USE OF BIOFLOC TECHNOLOGY IN NILE TILAPIA FINGERLING PRODUCTION AT DIFFERENT DENSITIES
DOI:
https://doi.org/10.20950/1678-2305.2019.45.4.505Keywords:
aquaculture, fish farming, production systems, weight gainAbstract
The effect of producing and culturing Nile tilapia (Oreochromis niloticus) fingerlings in biofloc technology (BFT)-based systems was investigated in terms of zootechnical performance, aiming to define the best culturing density for 64 days. A completely randomized design was used, with four replications totaling 24 experimental units. The weight gain of each batch of animals per experimental unit (E.U.) was evaluated at densities of 200, 400, 600, 800, and 1,000 fingerlings m-3. For controls, a Water Recirculation System with 248 fingerlings m-3 was used. The fingerlings were fed commercial feed containing 35% protein and brown sugar as a carbohydrate source at a C:N ratio of 20:1. Dissolved oxygen, total ammonia nitrogen, pH, and temperature were monitored daily, and nitrite and alkalinity were monitored weekly. The analysis of weight gain data obtained a linear function y = - 0.0017X2 + 3.724X í 87.77, with r2 = 0.864, coefficient of variation = 14.23%, and correlation coefficient = 0.91. At the end of the cultivation period the system’s planktonic community presented high diversity, dominated by rotifers and diatoms. The data of survival, density management demand, and physicochemical parameters variations of the water suggested an optimal density of 800 fish m-3, since this resulted in an average weight gain per E.U. of 1,891.25 ± 151.24 g, with a productive efficiency index of 274.96 that is approximately three times that of the control treatment (87.43). Biofloc technology can be employed in two-phase super-intensive Nile tilapia culture systems, with a stocking density in the rearing stage of 800 fish m-3.
References
Avnimelech, Y.; Kochba, M. 2009. Evaluation of nitrogen uptake and excretion by Tilápia in biofloc tanks, using 15N tracing. Aquaculture, 287(1): 163-168. http://dx.doi.org/10.1016/j.aquaculture.2008.10.009.
Azim, M.E.; Little, D.C. 2008. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile Tilápia (Oreochromis niloticus). Aquaculture, 283(1-4): 29-35. http://dx.doi.org/10.1016/j.aquaculture.2008.06.036.
Baldisseroto, B. 2013. Fisiologia de peixes aplicada í piscicultura. 3ª ed. Santa Maria: UFSM. 350p.
Brabo, M.F.; Pereira, L.F.S.; Santana, J.V.M.; Campelo, D.A.V.; Veras, G.C. 2016. Cenário atual da produção de pescado no mundo, no Brasil e no Estado do Pará: ênfase na aquicultura. Acta of Fisheries and Aquatic Resources, 4(2): 50-58.
Brasil, 1999. Instrução normativa nº. 20, de 21 de julho de 1999. Métodos analíticos físico-químicos para controle de produtos cárneos e seus ingredientes - sal e salmoura. Diário Oficial da União, Brasília, 27 de julho de 1999, Secão 1: p. 99. Available from: <http://www.consultaesic.cgu.gov.br/busca/dados/Lists/Pedido/Attachments/470907/RESPOSTA_PEDIDO_Instrucao%20Normativa%20SDA-APA%2020%20de%2021.7.1999.pdf> Access on: 16 sept 2018.
Brol, J.; Pinho, S.M.; Sgnaulin, T.; Pereira, K.R.; Thomas, M.C.; Mello, G.L.; Miranda-Baeza, A.; Emerenciano, M.G.C. 2017. Tecnologia de bioflocos (BFT) no desempenho zootécnico de tilápias: efeito da linhagem e densidades de estocagem. Archivos de Zootecnia, 66(254): 229-235. http://dx.doi.org/10.21071/az.v66i254.2326.
Champely, S. 2015. PWR: basic functions for power analysis. R package version 1.1-3. Available from: <https://CRAN.R-project.org/package=pwr> Access on: 18 nov. 2017.
Cochran, W.G. 1963. Sampling techniques. 2nd ed. New York: John Wiley & Sons.
Crab, A.B.; Avnimelech, Y.; Defoirdt, A.B.; Bossier, P.B.; Verstraete, W.A. 2007. Nitrogen removal techniques in aquaculture for a sustainable production Roselien. Aquaculture, 270(1-4): 1-14. http://dx.doi.org/10.1016/j.aquaculture.2007.05.006.
Das, S.K.; Mandal, A. 2018. Biofloc technology (BFT): an effective tool for remediation of environmental issues and cost effective novel technology in aquaculture. International Journal of Oceanography & Aquaculture, 2(2): 000135. Available from: https://www.researchgate.net/publication/324861601. Access on: 01 apr. 2019.
Dauda, A.B.; Romano, N.; Ebrahimi, M.; Teh, J.C.; Ajadi, A.; Chong, C.M.; Karim, M.; Natrah, I.; Kamarudin, M.S. 2018. Influence of carbon/nitrogen ratios on biofloc production and biochemical composition and subsequent effects on the growth, physiological status and disease resistance of African catfish (Clarias gariepinus) cultured in glycerol-based biofloc systems. Aqualculture, 483(1): 120-130. http://dx.doi.org/10.1016/j.aquaculture.2017.10.016.
Ebeling, J.M.; Timmons, M.B.; Bisogni, J.J. 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture, 257(1-4): 346-358. http://dx.doi.org/10.1016/j.aquaculture.2006.03.019.
Ekasari, J.; Crab, R.; Verstraete, W. 2010. Primary nutritional content of bio-flocs cultured with different organic carbon sources and salinity. Hayati Journal of Biosciences, 17(3): 125-130. http://dx.doi.org/10.4308/hjb.17.3.125.
Elmoor-Loureiro, L.M.A. 1997. Manual de identificação de cladóceros límnicos do Brasil. Brasília: Universa. 156p.
Emerenciano, M.; Cuzon, G.; Goguenheim, J.; Gaxiola, G. 2012. Floc contribution on spawning performance of blue shrimp Litopenaeus stylirostris. Aquaculture, 44(1): 75-85. http://dx.doi.org/10.1111/j.1365-2109.2011.03012.x.
Emerenciano, M.; Martínez-Córdova, L.R.; Martínez-Porchas, M.; Miranda-Baeza, A. 2017. Biofloc technology (BFT): a tool for water quality management in aquaculture. IntechOpen. http://dx.doi.org/10.5772/66416.
FAO í Food and Agriculture Organization of The United Nations. 2016. El estado mundial de la pesca y La acuicultura. Contribución a la seguridad alimentaria y La nutrición para todos. Rome: FAO. Available from: <http//www.fao.org/3/a-i5555e.pdf>. Access on: 22 feb. 2018.
FAO í Food and Agriculture Organization of The United Nations. 2018. El estado mundial de la pesca y la acuicultura 2018: cumplir los objetivos de desarrollo sostenible. Rome: FAO. Available from: <http://www.fao.org/3/I9540EN/i9540en.pdf >. Access on: 20 july 2018.
Hargreaves, J.A. 1998. Nitrogen biogeochemistry of aquaculture ponds. Aquaculture, 166(3-4): 181-212. http://dx.doi.org/10.1016/S0044-8486(98)00298-1.
Hargreaves, J.A. 2006. Photosynthetic suspended-growth systems in aquaculture. Aquacultural Engineering, 34(3): 344-363. http://dx.doi.org/10.1016/j.aquaeng.2005.08.009.
IBGE í Instituto Brasileiro de Geografia e Estatística Nacional. 2017. Produção da pecuária municipal. Rio de Janeiro. Available from: <https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9107-producao-da-pecuaria-municipal.html?=&t=resultados/tabelas>. Access on: 25 apr. 2019.
Kubitza, F. 2011. Tilápia: tecnologia e planejamento na produção comercial. 2ª ed. Jundiaí: Acqua Supre Comércio e Suprimentos para Aquicultura. 316p.
Kubitza, F. 2017. Oxigenio dissolvido e sua importí¢ncia para o desempenho e saúde de dos peixes e camarões. Panorama da Aquicultura, 27(162): 24-33.
Lambert, Y.; Dutil, J.D. 2001. Food intake and growth of adult Atlantic cod (Gadusmorhua L.) reared under different conditions of stocking density, feeding frequency and size-granding. Aquaculture, 192(2-4): 233-247. http://dx.doi.org/10.1016/S0044-8486(00)00448-8.
Lima, A.F. 2013. Sistemas de produção de peixes. In: Rodrigues, A.P.O. (Ed.). Piscicultura de água doce: multiplicando conhecimentos. 1ª ed. Brasília: EMBRAPA. p. 97-108.
Lima, E.C.R.; Souza, R.L.; Girao, P.J.M.; Braga, I.F.M.; Correia, E. 2018. Cultivo da tilápia do Nilo em bioflocos com diferentes fontes de carbono. Ciência Agronômica, 49(3): 458-466. http://dx.doi.org/10.5935/1806-6690.20180052.
Lima, E.C.R.; Souza, R.L.; Wambach, X.F.; Silva, U.L.; Correia, E. 2015. Cultivo da tilápia do Nilo Oreochromis niloticus em sistema de bioflocos com diferentes densidades de estocagem. Revista Brasileira de Saúde e Produção Animal, 16(4): 948-957. http://dx.doi.org/10.1590/S1519-99402015000400018.
Macêdo, J.A.B. 2005. Métodos laboratoriais de análises físico-químicas e microbiológicas. 3ª ed. Belo Horizonte: Conselho Regional de Química de Minas Gerais. 601p.
Machado, S.S.; Simões, L.N.; Gomide, A.T.M.; Almeida, V.M.F.; Carvalho, A.L.L. 2012. Tecnologia da fabricação do açúcar. Inhumas: IFG; Santa Maria: Universidade Federal de Santa Maria. 56p.
Mansour, A.T.; Esteban, M.A. 2017. Effects of carbon sources and plant protein levels in a biofloc system on growth performance, and the immune and antioxidant status of Nile Tilápia (Oreochromis niloticus). Fish & Shellfish Immunology, 64(1): 202-209. http://dx.doi.org/10.1016/j.fsi.2017.03.025. PMid:28302578.
Martins, G.B.; Tarouco, F.; Rosa, C.E.; Robaldo, R.B. 2017. The utilization of sodium bicarbonate, calcium carbonate or hydroxide in biofloc system: water quality, growth performance and oxidative stress of Nile Tilápia (Oreochromis niloticus). Aquaculture, 468(1): 10-17. http://dx.doi.org/10.1016/j.aquaculture.2016.09.046.
Monroy-Dosta, M.C.; Lara, A.R.; Castro, M.J.; Castro, M.G.; Emerenciano, C.M. 2013. Composición y abundancia de comunidades microbianas. Biologia Marinha e Oceanografia, 48(3): 511-520. http://dx.doi.org/10.4067/S0718-19572013000300009.
Moro, G.V.; Rezende, F.P.; Alves, A.L.; Gashimoto, D.T.; Varela, E.S.; Torati, L.S. 2013. Espécies de peixe para piscicultura. In: Rodrigues, P.O. (Ed.). Piscicultura de água doce: multiplicando conhecimentos. Brasília: EMBRAPA. p. 28-69.
Najdegerami, E.H.; Bakhshi, F.; Lakani, F.B. 2016. Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L.) fingerlings in zero-water exchange system. Fish Physiology and Biochemistry, 42(2): 457-465. http://dx.doi.org/10.1007/s10695-015-0151-9. PMid:26530301.
Pinho, S.M.; Molinari, D.; Mello, G.L.; Fitzsimmons, K.M.; Emerenciano, M.G.C. 2017. Effluent from a biofloc technology (BFT) tilapia culture on the aquaponics production of different lettuce varieties. Ecological Engineering, 103: 146-153. http://dx.doi.org/10.1016/j.ecoleng.2017.03.009.
Poli, M.A.; Legarda, E.C.; Lorenzo, M.A.; Martins, M.A.; Vieira, F.N. 2018. Pacific white shrimp and Nile tilapia integrated in a biofloc system under different fish-stocking densities. Aquaculture, 498(1): 83-89. http://dx.doi.org/10.1016/j.aquaculture.2018.08.045.
Poli, M.A.; Schveitzer, R.; Oliveira, N. 2015. The use of biofloc technology in a South American catfish (Rhamdia quelen) hatchery: Effect of suspended solids in the performance of larvae. Aquaculture, 66(1): 17-21. http://dx.doi.org/10.1016/j.aquaeng.2015.01.004.
Ray, J.A.; Lotz, J.M. 2014. Comparing a chemoautotrophic-based biofloc system and three heterotrophic-based systems receiving different carbohydrate sources. Aquaculture, 63(1): 54-61. http://dx.doi.org/10.1016/j.aquaeng.2014.10.001.
Reid, G. 1999. The scientific basis for probiotic strains of Lactobacillus. Applied and Environmental Microbiology, 65(9): 3763-3766. PMid:10473372.
Ren, W.; Lia, L.; Dong, S.; Tian, X.; Xue, Y. 2018. Effects of C/N ratio and light on ammonia nitrogen uptake in Litopenaeus vannamei culture tanks. Aquaculture, 498(1): 123-131. http://dx.doi.org/10.1016/j.aquaculture.2018.08.043.
Santos, V.B.; Mareco, E.A.; Silva, M.P.D. 2013. Growth curves of Nile Tilápia (Oreochromis niloticus) strains cultivated at different temperatures. Acta Scientiarum, 35(3): 235-242. http://dx.doi.org/10.4025/actascianimsci.v35i3.19443.
Schneider, O.; Sereti, V.; Eding, E.P.Y.; Verreth, J.A.J. 2006. Molasses as C source for heterotrophic bacteria production on solid fish waste. Aquaculture, 261(4): 1239-1248. http://dx.doi.org/10.1016/j.aquaculture.2006.08.053.
Schwarz, K.K.; Nascimento, J.C.; Gomes, V.A.A.; Silva, C.H.; Salvador, J.G.; Fernandes, M.R.; Nunes, R.M. 2016. Desempenho zootécnico de alevinos de tilápias do nilo (Oreochromis niloticus) alimentados com levedura de Saccharomyces cerevisiae. Holos, 3(1): 104-113. http://dx.doi.org/10.15628/holos.2016.1869.
SEBRAE í Serviço Brasileiro de Apoio as Micro e Pequenas Empresas, 2015. Aquicultura no Brasil. (Série Estudos Mercadológicos). Available from: <http://www.bibliotecas.sebrae.com.br/chronus/arquivos_chronus/bds/bds.nsf/4b14e85d5844cc99cb32040a4980779f/$File/5403.pdf> Access on: 22 nov. 2018.
Sgnaulin, T.; De Mello, G.L.; Thomas, M.C.; Garcia, J.R.E.; De Oca, G.A.R.M.; Emerenciano, M.G.C. 2017. Biofloc technology (BFT): An alternative aquaculture system for piracanjuba Brycon orbignyanus. Aquaculture, 485(1): 119-123. http://dx.doi.org/10.1016/j.aquaculture.2017.11.043.
Weatherburn, N.W. 1967. Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry, 39(8): 971-974. http://dx.doi.org/10.1021/ac60252a045.
Yanbo, W.; Wenju, Z.; Weifen, L.; Zirong, X. 2006. Acute toxicity of nitrite on tilapia (Oreochromis niloticus) at different external chloride concentrations. Fish Physiology and Biochemistry, 32(1): 49-54. http://dx.doi.org/10.1007/s10695-005-5744-2. PMid:20035478.