The influence of the individual variation, sex and spatial factor in somatic growth of Serrasalmus rhombeus, an Amazon predator fish species

Authors

DOI:

https://doi.org/10.20950/1678-2305/bip.2024.51.e859

Keywords:

Otolith, Interindividual Variation, Amazon River Basin, Small Hydroelectric Plants, Piranha

Abstract

The Amazon is one of the regions with the greatest fish diversity on the planet. In this vast biodiversity, there is Serrasalmus rhombeus, a predatory species that plays a vital ecological role in aquatic ecosystems. In order to generate biological data and valuable information to management efforts, we characterized the somatic growth pattern of S. rhombeus and identified its sources of variation. To achieve this, individuals of S. rhombeus were collected from two dams between October 2018 and November 2019. Analyzing the marginal increment based on data from 158 individuals revealed the formation of a single annual growth ring at the onset of the rainy season. Individual ages ranged from 1 to 6 years old. Among the considered models, the one that provided the best explanation for the variation in somatic growth of S. rhombeus integrated individual variation, sex, and sites. This highlights that the rate of an individual’s growth and the size it can attain are influenced by individual resource utilization, which is mediated by interindividual genetic diversity. Furthermore, this variation is associated with sex and the specific site where the individual is located.

References

Agostinho, A. A., Gomes, L. C., Santos, N. C., Ortega, J. C., & Pelicice, F. M. (2016). Fish assemblages in Neotropical reservoirs: Colonization patterns, impacts and management. Fisheries Research, 173(Part 1), 26-36. https://doi.org/10.1016/j.fishres.2015.04.006

Agostinho, A. A., Pelicice, F. M., & Gomes, L. C. (2008). Dams and the fish fauna of the Neotropical region: Impacts and management related to diversity and fisheries. Brazilian Journal of Biology, 68(4 Suppl.), 1119-1132. https://doi.org/10.1590/S1519-69842008000500019

Albuquerque, C. Q., Lopes, L. C. S., Jaureguizar, A. J., & Condini, M. V. (2019). The visual quality of annual growth increments in fish otoliths increases with latitude. Fisheries Research, 220, 105351. https://doi.org/10.1016/j.fishres.2019.105351

Alós, J., Palmer, M., Alonso-Fernández, A., & Morales-Nin, B. (2010). Individual variability and sex-related differences in the growth of Diplodus annularis (Linnaeus, 1758). Fisheries Research, 101(1-2), 60-69. https://doi.org/10.1016/j.fishres.2009.09.007

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Moraes, G., Leonardo, J., & Sparovek, G. (2014). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711- 728. https://doi.org/10.1127/0941-2948/2013/0507

Ambrosio, A. M., Balbi, T. J., Francisco, T. M., Gomes, L. C., Zuliani, M. S., & Okada, E. K. (2014). Aging and growth parameter from the Piaractus mesopotamicus (pacu) from the Cuiabá river, Mato Grosso, Brazil. Iheringia. Série Zoologia, 104(4), 413-417. https://doi.org/10.1590/1678-476620141044413417

Arantes, C. C., Castello, L., Stewart, D. J., Cetra, M., & Queiroz, H. L. (2010). Population density, growth and reproduction of Arapaima in an Amazonian river-floodplain. Ecology of Freshwater Fish, 19(3), 455-465. https://doi.org/10.1111/j.1600-0633.2010.00431.x

Araújo, M. S., Bolnick, D. I., & Layman, C. A. (2011). The ecological causes of individual specialization. Ecology Letters, 14(9), 948-958. https://doi.org/10.1111/j.1461-0248.2011.01662.x

Araujo-Lima, C., & Goulding, M. (1997). So fruitful a fish: Ecology, conservation, and aquaculture of the Amazon’s tambaqui. Columbia University Press.

Avigliano, E., Pouilly, M., Vargas, F., Penha, J., Silva, N., Bouchez, J., & Volpedo, A. V. (2023). Environmental history of one of the largest freshwater neotropical fish (Zungaro jahu) from otolith isotopic analysis. River Research and Applications, 39(5), 887-896. https://doi.org/10.1002/rra.4120

Burnham, K. P., & Anderson, D. R. (2002). Model selection and inference: A practical information-theoretic approach (2nd ed.). Springer.

Butt, N., De Oliveira, P., & Costa, M. H. (2011). Evidence that deforestation affects the onset of the rainy season in Rondônia, Brazil. Journal of Geophysical Research: Atmospheres, 116(D11), 1-8. https://doi.org/10.1029/2010JD015174

Campana, S. E. (1990). How reliable are growth backcalculations based on otoliths? Canadian Journal of Fisheries and Aquatic Sciences, 47(11), 2219-2227. https://doi.org/10.1139/f90-246

Campana, S. E. (2001). Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology, 59(2), 197-242. https://doi.org/10.1111/j.1095-8649.2001.tb00127.x

Campana, S. E. (2004). Photographic atlas of fish otoliths of the Northwest Atlantic Ocean NRC Research Press. Canadian Special Publication of Fisheries and Aquatic Sciences, No. 133.

Campana, S. E., & Thorrold, S. R. (2001). Otoliths, increments, and elements: Keys to a comprehensive understanding of fish populations? Canadian Journal of Fisheries and Aquatic Sciences, 58(1), 30-38. https://doi.org/10.1139/f00-177

Campos, C. P., Freitas, C. E. D. C., & Amadio, S. (2015). Growth of Cichla temensis Humboldt, 1821 (Perciformes: Cichlidae) from the middle rio Negro, Amazonas, Brazil. Neotropical Ichthyology, 13(2), 413-420. https://doi.org/10.1590/1982-0224-20140090

Castello, L. (2021). Science for conserving Amazon freshwater ecosystems. Aquatic Conservation: Marine and Freshwater Ecosystems, 31(5), 999-1004. https://doi.org/10.1002/aqc.3615

Castello, L., & Macedo, M. N. (2016). Large-scale degradation of Amazonian freshwater ecosystems. Global Change Biology, 22(3), 990-1007. https://doi.org/10.1111/gcb.13173

Correa, G. M., Ciannelli, L., Barnett, L. A., Kotwicki, S., & Fuentes, C. (2020). Improved estimation of age composition by accounting for spatiotemporal variability in somatic growth. Canadian Journal of Fisheries and Aquatic Sciences, 77(11), 1810-1821. https://doi.org/10.1139/cjfas-2020-0166

Costa, R. M. R. D., Fabré, N. N., Amadio, S. A., & Tuset, V. M. (2018). Plasticity in the shape and growth pattern of asteriscus otolith of black prochilodus Prochilodus nigricans (Teleostei: Characiformes: Prochilodontidae) freshwater Neotropical migratory fish. Neotropical Ichthyology, 16(4), e180051. https://doi.org/10.1590/1982-0224-20180051

Cunha-Neto, M. A., Hazin, H. G., & da Silva, G. B. (2022). Age and growth of skipjack tuna (Katsuwonus pelamis) in the western equatorial Atlantic based on dorsal spines analysis. Boletim do Instituto de Pesca, 48, e686. https://doi.org/10.20950/1678-2305/bip.2022.48.e686

DeAngelis, D. L., & Grimm, V. (2014). Individual-based models in ecology after four decades. F1000Prime Reports, 6, 39. https://doi.org/10.12703/P6-39

De Santana, H. S., & Minte-Vera, C. V. (2017). Age and growth of Prochilodus lineatus in a spatially structured population: Is there concordance between otoliths and scales? Environmental Biology of Fishes, 100, 223-235. https://doi.org/10.1007/s10641-017-0574-5

Dieterman, D. J., Hoxmeier, R. J. H., & Staples, D. F. (2012). Factors influencing growth of individual brown trout in three streams of the upper Midwestern United States. Ecology of Freshwater Fish, 21(3), 483-493. https://doi.org/10.1111/j.1600-0633.2012.00567.x

Duponchelle, F., Arce, A. R., Waty, A., Panfili, J., Renno, J. F., Farfan, F., García-Vásquez, A., Koo, F. C., Davila, C. G., Vargas, G., Ortiz, A., Pinedo, R., & Nuñez, J. (2012). Contrasted hydrological systems of the Peruvian Amazon induce differences in growth patterns of the silver arowana, Osteoglossum bicirrhosum. Aquatic Living Resources, 25(1), 55-66. https://doi.org/10.1051/alr/2012005

Duponchelle, F., Lino, F., Hubert, N., Panfili, J., Renno, J. F., Baras, E., Torrico, J. P., Dugué, R., & Nuñez, J. (2007). Environment-related life history trait variations of the redbellied piranha, Pygocentrus nattereri, in two river basins of the Bolivian Amazon. Journal of Fish Biology, 71(4), 1113-1134. https://doi.org/10.1111/j.1095-8649.2007.01583.x

Duponchelle, F., Pouilly, M., Pécheyran, C., Hauser, M., Renno, J. F., Panfili, J., Darnaude, A. M., Garcia Vasquez, A., Carvajal-Vallejos, F., Garcia-Dávil, C., Doria, C., Berail, S., Donard, A., Sonda, F., Santos, R. V., Nunez, J., Point, D., Labonne, M., & Baras, E. (2016). Trans-Amazonian natal homing in giant catfish. Journal of Applied Ecology, 53(5), 1511-1520. https://doi.org/10.1111/1365-2664.12665

Estlander, S., Kahilainen, K. K., Horppila, J., Olin, M., Rask, M., Kubečka, J., & Nurminen, L. (2016). Latitudinal variation in sexual dimorphism in life history traits of a freshwater fish. Ecology and Evolution, 7(2), 665-673. https://doi.org/10.1002/ece3.2658

Fernandes, I. (2025). The influence of individual variation, sex, and spatial factors on the somatic growth of Serrasalmus rhombeus, an Amazonian predatory fish. figshare. Dataset. https://doi.org/10.6084/m9.figshare.28448072.v1

Fernandes, I. M., Sacoman, K. D. J., Farias-Neto, J. P. D., Silva, H. P. D., Vendruscolo, J., & Lourenço, L. S. (2021). Effect of environmental and spatial factors on small-sized fish assemblages in a tropical river. Acta Amazonica, 51(2), 129-138. https://doi.org/10.1590/1809-4392202002303

Filipe, J. A., & Kyriazakis, I. (2019). Bayesian, likelihoodfree modelling of phenotypic plasticity and variability in individuals and populations. Frontiers in Genetics, 10, 727. https://doi.org/10.3389/fgene.2019.00727

Garcez, R. C., Humston, R., Harbor, D., & Freitas, C. E. (2015). Otolith geochemistry in young of the year peacock bass Cichla temensis for investigating natal dispersal in the Rio Negro (Amazon Brazil) river system. Ecology of Freshwater Fish, 24(2), 242-251. https://doi.org/10.1111/eff.12142

Goldman, K. J. (2005). Age and growth of elasmobranch fishes. In J. A. Musick & R. Bonfil (Eds.), Management techniques for elasmobranch fisheries (FAO Fisheries Technical Paper, pp. 76-251). FAO. Goulding, M. (1981). The fishes and the forest: Explorations in Amazonian natural history. University of California Press.

Green, B. S., Mapstone, B. D., Carlos, G., & Begg, G. A. (2009). Introduction to otoliths and fisheries in the tropics. In B. S. Green, B. D. Mapstone, G. Carlos, & G. A. Begg (Eds.), Tropical Fish Otoliths: Information for Assessment, Management and Ecology (pp. 1-22). Springer.

Grimm, V., & Railsback, S. F. (2005). Individual-based modeling and ecology. Princeton University Press.

Grønkjær, P. (2016). Otoliths as individual indicators: A reappraisal of the link between fish physiology and otolith characteristics. Marine and Freshwater Research, 67, 881-888. https://doi.org/10.1071/MF15155

Haimovici, M., Kikuchi, E., & Gonçalves Oliveira, C. (2022). Age and growth of the red flounder Paralichthys orbignyanus (Teleostei: Pleuronectiformes) in Southern Brazil. Ciências do Mar e da Pesca, 36(1), 17-30. https://doi.org/10.47193/mafis.3612023010103

Hansen, L. E., Yackulic, C. B., Dickson, B. G., Deemer, B. R., & Best, R. J. (2023). Linking ecosystem processes to consumer growth rates: Gross primary productivity as a driver of freshwater fish somatic growth in a resource-limited river. Canadian Journal of Fisheries and Aquatic Sciences, 80(9), 1456-1469. https://doi.org/10.1139/cjfas-2022-0229

Hauser, M., Doria, C. R., Melo, L. R., Santos, A. R., Ayala, D. M., Nogueira, L. D., & Renno, J. F. (2018). Age and growth of the Amazonian migratory catfish Brachyplatystoma rousseauxii in the Madeira River basin before the construction of dams. Neotropical Ichthyology, 16(1), e170130. https://doi.org/10.1590/1982-0224-20170130

Hauser, M., Doria, C. R., Santos, R. V., García-Vasquez, A., Pouill, M., Pécheyran, C., & Darnaude, A. (2019a). Shedding light on the migratory patterns of the Amazonian goliath catfish, Brachyplatystoma platynemum, using otolith 87Sr/86Sr analyses. Aquatic Conservation: Marine and Freshwater Ecosystems, 29(3), 397-408. https://doi.org/10.1002/aqc.3046

Hauser, M., Duponchelle, F., Hermann, T. W., Limburg, K. E., Castello, L., Stewart, D. J., & Pécheyran, C. (2019b). Unmasking continental natal homing in goliath catfish from the upper Amazon. Freshwater Biology, 65(2), 325-336. https://doi.org/10.1111/fwb.13427

Hermann, T. W., Duponchelle, F., Castello, L., Limburg, K. E., Pereira, L. A., & Hauser, M. (2021). Harnessing the potential for otolith microchemistry to foster the conservation of Amazonian fishes. Aquatic Conservation: Marine and Freshwater Ecosystems, 31(5), 1206-1220. https://doi.org/10.1002/aqc.3567

Hermann, T. W., Stewart, D. J., Limburg, K. E., & Castello, L. (2016). Unravelling the life history of Amazonian fishes through otolith microchemistry. Royal Society Open Science, 3(6), 1-16. https://doi.org/10.1098/rsos.160206

Hernández, A., Plaza, G., Gutiérrez, J., Cerna, F., & Niklitschek, E. J. (2020). Spatiotemporal analysis of the daily growth traits of the prerecruits of a small pelagic fish in response to environmental drivers. Fisheries Oceanography, 29(6), 457-469. https://doi.org/10.1111/fog.12489

Izzo, C., Doubleday, Z. A., Grammer, G. L., Disspain, M. C., Ye, Q., & Gillanders, B. M. (2017). Seasonally resolved environmental reconstructions using fish otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 74(1), 23-31. https://doi.org/10.1139/cjfas-2016-0055

Jézéquel, C., Tedesco, P. A., Bigorne, R., Maldonado-Ocampo, J. A., Ortega, H., Hidalgo, M., & Agudelo, E.(2020). A database of freshwater fish species of the Amazon Basin. Scientific Data, 7, 96. https://doi.org/10.1038/s41597-020-0436-4

Kritzer, J. P. (2004). Sex-specific growth and mortality, spawning season, and female maturation of the stripey bass (Lutjanus carponotatus) on the Great Barrier Reef. Fishery Bulletin, 102(1), 94-107.

Lai, H. L., Gallucci, V. F., Gunderson, D. R., & Donnelly, R. F. (1996). Age determination in fisheries: Methods and applications to stock assessment. In V. F. Galucci, S. B. Saila, D. J. Gunderson, & B. J. Rothschild (Eds.), Stock assessment: quantitative methods and applications for smallscale fisheries (pp. 82-178). Lewis Publishers, CRC Press.

Lees, A. C., Peres, C. A., Fearnside, P. M., Schneider, M., & Zuanon, J. A. (2016). Hydropower and the future of Amazonian biodiversity. Biodiversity and Conservation, 25, 451-466. https://doi.org/10.1007/s10531-016-1072-3

Lewis, L. S., Denney, C., Willmes, M., Xieu, W., Fichman, R. A., Zhao, F., & Hobbs, J. A. (2021). Otolith-based approaches indicate strong effects of environmental variation on growth of a critically endangered estuarine fish. Marine Ecology Progress Series, 676, 37-56. Available at: https://www.researchgate.net/publication/353682923_Otolith-based_approaches_indicate_strong_effects_of_environmental_variation_on_growth_of_a_Critically_Endangred_estuarine_fish

Lourenço, L. S., Costa, R. M. R. D., Rondon, P. L., & Mateus, L. A. (2017). Individual, spatial and inter-sex variation in somatic growth: A study of Piaractus mesopotamicus (Characiformes: Serrasalmidae), a long distance freshwater Neotropical migratory fish. Neotropical Ichthyology, 15(2), e160097. https://doi.org/10.1590/1982-0224-20160097

Maciel, T. R., Vaz-dos-Santos, A. M., Barradas, J. R. D. S., & Vianna, M. (2019). Sexual dimorphism in the catfish Genidens genidens (Siluriformes: Ariidae) based on otolith morphometry and relative growth. Neotropical Ichthyology, 17(1), e180101. https://doi.org/10.1590/1982-0224-20180101

Mateus, L. A. F., & Petrere Júnior, M. (2004). Age, growth and yield per recruit analysis of the Pintado Pseudoplatystoma corruscans (Agassiz, 1829) in the Cuiaba River Basin, Pantanal Matogrossense. Brazilian Journal of Biology, 64(2), 57-64. https://doi.org/10.1590/S1519-69842004000200011

McDougall, C. A., Nelson, P. A., & Barth, C. C. (2018). Extrinsic factors influencing somatic growth of Lake Sturgeon. Transactions of the American Fisheries Society, 147(3), 459-479. https://doi.org/10.1002/tafs.10050

Mereles, M. A., Sousa, R. G. C., Furtado, C. L. C., & Freitas, C. E. C. (2020). Relações biométricas entre dimensões do corpo e otólito do Cichla temensis Humboldt, 1821 da bacia do médio rio Negro. Scientia Amazonia, 9(2), 1-10.

Mol, J. H., Mérona, B. D., Ouboter, P. E., & Sahdew, S. (2007). The fish fauna of Brokopondo Reservoir, Suriname, during 40 years of impoundment. Neotropical Ichthyology, 5(3), 351-368. https://doi.org/10.1590/S1679-62252007000300015

Morat, F., Wicquart, J., Schiettekatte, N. M., de Sinéty, G., Bienvenu, J., Casey, J. M., Brandl, S. J., Carlot, J., Degregori, S., Mercière, A., Fey, P., Galzin, R., Letourneur, Y., Sasal, P., Parravicini, V. (2020). Individual backcalculated size-at-age based on otoliths from Pacific coral reef fish species. Scientific Data, 7(1), 370. https://doi.org/10.1038/s41597-020-00711-y

Muniz, C. M., dos Santos, N. C., Baumgartner, M. T., Agostinho, A. A., & Gomes, L. C. (2019). Chronological age and reservoir characteristics as predictors of trait composition in Neotropical reservoir fish assemblages. Ecology of Freshwater Fish, 29(2), 241-251. https://doi.org/10.1111/eff.12510

Nater, C. R., Rustadbakken, A., Ergon, T., Langangen, Ø., Moe, S. J., Vindenes, Y., & Aass, P. (2018). Individual heterogeneity and early life conditions shape growth in a freshwater top predator. Ecology, 99(5), 1011-1017. https://doi.org/10.1002/ecy.2178

Nóbrega, M. F. D., & Lessa, R. P. (2009). Age and growth of Spanish mackerel (Scomberomorus brasiliensis) off the northeastern coast of Brazil. Neotropical Ichthyology, 7(4), 667-676. https://doi.org/10.1590/S1679-62252009000400016

Oliveira, D. A., Reis, R. M., Lourenço, L. S., Silva, H. P., Vendruscolo, J., & Fernandes, I. M. (2023). Ecologia trófica de Cichla pleiozona e Serrasalmus rhombeus em reservatórios da bacia do rio Branco, Amazônia ocidental. Revista Brasileira de Ciências da Amazônia, 12(1), 17-28. https://doi.org/10.47209/2317-5729.v.12.n.1.p.17-28

Panfili, J., Tomás, J., & Morales-Nin, B. (2009). Otolith microstructure in tropical fish. In B. S. Green, B. D. Mapstone, G. Carlos, & G. A. Begg (Eds.), Tropical fish otoliths: information for assessment, management and ecology (pp. 212-248). Springer.

Pérez, A., & Fabré, N. N. (2009). Seasonal growth and life history of the catfish Calophysus macropterus (Lichtenstein, 1819) (Siluriformes: Pimelodidae) from the Amazon floodplain. Journal of Applied Ichthyology, 25(3), 343-349. https://doi.org/10.1111/j.1439-0426.2008.01104.x

Pinheiro, J., & Bates, D. (2000). Mixed-effects models in S and S-PLUS. Springer-Verlag.

Pouilly, M., Point, D., Sondag, F., Henry, M., & Santos, R. V. (2014). Geographical origin of Amazonian freshwater fishes fingerprinted by 87Sr/86Sr ratios on fish otoliths and scales. Environmental Science & Technology, 48(16), 8980-8987. https://doi.org/10.1021/es500071w

R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/2020

Reis, R. E., Kullander, S. O., & Ferraris, C. J. (2003). Check list of the freshwater fishes of South and Central America. Edipucrs.

Reis, R. M. D., Lourenço, L. S., Silva, H. P., Vendrusclo, J., & Fernandes, I. M. (2020). Length-weight relationships and condition factor of the predatory fish, Cichla pleiozona and Serrasalmus rhombeus, from two tropical reservoirs, Amazon basin, Brazil. International Journal of Fisheries and Aquatic Studies, 8(3), 355-360.

Reis-Santos, P., Gillanders, B. M., Sturrock, A. M., Izzo, C., Oxman, D. S., Lueders-Dumont, J. A., & Walther, B. D. (2023). Reading the biomineralized book of life: Expanding otolith biogeochemical research and applications for fisheries and ecosystem-based management. Reviews in Fish Biology and Fisheries, 33(2), 411-449. https://doi.org/10.1007/s11160-022-09720-z

Rypel, A. L. (2007). Sexual dimorphism in growth of freshwater drum. Southeastern Naturalist, 6(2), 333-342. https://doi.org/10.1656/1528-7092(2007)6[333:SDIGOF]2.0.CO;2

Santana, F. M., de Oliveira, C. D. L., Resende, A. G. A., de Castro, A. C. L., da Silva Almeida, Z., & Lessa, R (2023). Age and growth of the Acoupa Weakfish (Cynoscion acoupa) of the Brazilian Amazonian Coast, through micro and macrostructures in otoliths. Fisheries Research, 268, 106826. https://doi.org/10.1016/j.fishres.2023.106826

Santana, H. S. D., Rodrigues, A. C., & Minte-Vera, C. V. (2018). Otolith morphometry provides length and weight predictions and insights about capture sites of Prochilodus lineatus (Characiformes: Prochilodontidae). Neotropical Ichthyology, 16(4), e180094. https://doi.org/10.1590/1982-0224-20180094

Santos, G., Ferreira, E., & Zuanon, J. (2006). Peixes comerciais de Manaus (2nd ed.). INPA.

Sá-Oliveira, J. C., Angelini, R., & Isaac-Nahum, V. J. (2015). Population parameters of the fish fauna in a long established Amazonian reservoir (Amapá, Brazil). Journal of Applied Ichthyology, 31(2), 290-295. https://doi.org/10.1111/jai.12667

Scanferla, A. F. L. D. S., & Súarez, Y. R. (2016). Flood pulse are the main determinant of feeding dynamics and composition of Odontostilbe pequira (Characiformes: Characidae) in southern Pantanal, Brazil. Acta Limnologica Brasiliensia, 28, e19. https://doi.org/10.1590/S2179-975X3316

Secor, D. H., Dean, J. M., & Laban, E. H. (1992). Otolith removal and preparation for microstructural examination. In S. E. Campana & D. K. Stevenson (Eds.), Otolith microstructure examination and analysis (pp. 19-57). Canadian Special Publication of Fisheries and Aquatic Sciences, 117.

Shelton, A. O., Satterthwaite, W. H., Beakes, M. P., Munch, S. B., Sogard, S. M., & Mangel, M. (2013). Separating intrinsic and environmental contributions to growth and their population consequences. The American Naturalist, 181(6), 799-814. https://doi.org/10.1086/670198

Siangas, E. L., Pouilly, M., Vallejos, A., Pérez, T., & Rejas, D. (2012). Effect of water quality on growth of four fish species in the Iténez basin (Upper Madera, Amazon). Environmental Biology of Fishes, 95, 371-381. https://doi.org/10.1007/s10641-012-0011-8

Sousa, F. B., Soares, M. G. M., & Prestes, L. (2013). Population dynamics of the yellow piranha Serrasalmus spilopleura Kner, 1858 (Characidae, Serrasalminae) in Amazonian floodplain lakes. Acta Scientiarum. Biological Sciences, 35(3), 367-372. https://doi.org/10.4025/actascibiolsci.v35i3.15749

Sousa, R. G. C., Humston, R., & Freitas, C. E. C. (2016). Movement patterns of adult peacock bass Cichla temensis between tributaries of the middle Negro River basin (Amazonas–Brazil): An otolith geochemical analysis. Fisheries Management and Ecology, 23(1), 76-87. https://doi.org/10.1111/fme.12166

Sparre, P., & Venema, S. C. (1997). Introdução à avaliação de mananciais de peixes tropicais - Parte 1. FAO. FAO Documento Técnico sobre as Pescas, No. 306.

Taylor, C. C. (1960). Water temperature and cod growth-rate. ICES Journal of Marine Sciences, 25(2), 223-224. https://doi.org/10.1093/icesjms/25.2.223

Tesfaye, M., Souza, A. T., Soukalová, K., Šmejkal, M., Hejzlar, J., Prchalová, M., Říha, M., Muška, M., Vašek, M., Frouzová, J., Blabolil, P., Boukal, D. S., & Kubečka, J. (2023). Somatic growth of pikeperch (Stizostedion lucioperca) in relation to variation in temperature and eutrophication in a Central Europe Lake. Fisheries Research, 267, 106824. https://doi.org/10.1016/j.fishres.2023.106824

Tondato, K. K., Súarez, Y. R., Mateus, L. A. F., Vicentin, W., & Fialho, C. B. (2018). Life history characteristics and recruitment of fish under the effect of different hydrological regimes in a tropical floodplain. Environmental Biology of Fishes, 101, 1369-1384. https://doi.org/10.1007/s10641-018-0784-5

Vastano, A. R., Able, K. W., Jensen, O. P., López-Duarte, P. C., Martin, C., & Roberts, B. J. (2017). Age validation and seasonal growth patterns of a subtropical marsh fish: The Gulf Killifish, Fundulus grandis. Environmental Biology of Fishes, 100, 1315-1327. https://doi.org/10.1007/s10641-017-0645-7

Vicentin, W., Tondato, K. K., Silva Ferreira, F., Costa, F. E. D. S., & Súarez, Y. R. (2018). Population parameters and reproduction of the piranha Serrasalmus marginatus in the Negro River, Pantanal, Brazil. Journal of Applied Ichthyology, 34, 1136-1144. https://doi.org/10.1111/jai.13770

Vigliola, L., & Meekan, M. G. (2009). The back-calculation of fish growth from otoliths. In B. S. Green, B. D. Mapstone, G. Carlos, & G. A. Begg (Eds.), Tropical Fish Otoliths: Information for Assessment, Management and Ecology (pp. 174-211). Springer.

Vincenzi, S., Jesensek, D., & Crivelli, A. J. (2020). Biological and statistical interpretation of size-at-age, mixed-effects models of growth. Royal Society Open Science, 7(4), 192-146. https://doi.org/10.1098/rsos.192146

Vincenzi, S., Mangel, M., Crivelli, A. J., Munch, S., & Skaug, H. J. (2014). Determining individual variation in growth and its implication for life-history and population processes using the empirical Bayes method. PLoS Computational Biology, 10(9), e1003828. https://doi.org/10.1371/journal.pcbi.1003828

Waddell, J. C., Njeru, S. M., Akhiyat, Y. M., Schachner, B. I., Correa-Roldán, E. V., & Crampton, W. G. (2019). Reproductive life-history strategies in a species-rich assemblage of Amazonian electric fishes. PLoS One, 14(12), e0226095. https://doi.org/10.1371/journal.pone.0226095

Wagner, T., Bremigan, M. T., Cheruvelil, K., Soranno, P. A., Nate, N. N., & Breck, J. E. (2007). A multilevel modeling approach to assessing regional and local landscape features for lake classification and assessment of fish growth rates. Environmental Monitoring and Assessment, 130, 437-454. https://doi.org/10.1007/s10661-006-9434-z

Walker, R. H., Kluender, E. R., Inebnit, T. E., & Reid Adams, S. (2013). Differences in diet and feeding ecology of similar sized spotted (Lepisosteus oculatus) and shortnose (Lepisosteus platostomus) gars during flooding of a southeastern US river. Ecology of Freshwater Fish, 22(4), 617-625. https://doi.org/10.1111/eff.12066

Winemiller, K. O. (1989). Patterns of variation in life history among South American fishes in seasonal environments. Oecologia, 81(2), 225-241. https://doi.org/10.1007/bf00379810

Winemiller, K. O., McIntyre, P. B., Castello, L., Fluet-Chouinard, E., Giarrizzo, T., Nam, S., & Stiassny, M. L. J. (2016). Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science, 351(6269), 128-129. https://doi.org/10.1126/science.aac7082

Published

2025-02-28

Issue

Section

Scientific Article