• Lilian Fiori Nitz Universidade Federal do Rio Grande, Instituto de Oceanografia, Laboratório de Aquacultura Continental, Programa de Pós-graduação em Aquicultura
  • Lucas Campos Maltez Universidade Federal do Rio Grande, Instituto de Oceanografia, Laboratório de Aquacultura Continental, Programa de Pós-graduação em Aquicultura
  • Lucas Pellegrin Universidade Federal do Rio Grande, Instituto de Oceanografia, Laboratório de Aquacultura Continental, Programa de Pós-graduação em Aquicultura
  • Luciano de Oliveira Garcia Universidade Federal do Rio Grande, Instituto de Oceanografia, Laboratório de Aquacultura Continental, Programa de Pós-graduação em Aquicultura http://orcid.org/0000-0001-9133-7212
  • Luis André Luz Barbas Instituto Federal de Educação, Ciência e Tecnologia do Pará -  IFPA, Laboratório de Aquacultura de Espécies Tropicais, Campus Castanhal, http://orcid.org/0000-0002-2708-8909
  • Carlos Prentice-Hernández Universidade Federal de Rio Grande -  FURG, Escola de Quí­­mica e Alimentos, Laboratório de Tecnologia de Alimentos, Programa de Pós-graduação em Aquicultura




freshwater fish, toxicity, proximate composition, lactate, lipid peroxidation, sensory analysis


This study aimed to evaluate de effect of the exposure to sub-lethal levels of ammonia on blood parameters and flesh quality of juvenile pacu (Piaractus mesopotamicus), including assessment of such parameters post recovery in ammonia-free water. Juveniles (27.1 ± 5.4 g) were exposed to concentrations of ammonia at 0.0 (control); 0.5; and 1.0 mg N-NH3 L-1 for 10 days followed by the same period of recovery in ammonia-free water. On the 10th day post exposure and after a recovery period, samples of blood were taken for glucose, lactate analyses and evaluation of haematocrit. To evaluate lipid peroxidation, proximate composition and sensory analysis, samples of muscle/fillets were also obtained. Exposure to ammonia caused alterations in haematological response and negatively affected sensory analysis of pacu fillet. However, proximate composition was unchanged and lipid peroxidation process was not intensified in muscle. In conclusion, exposure to sublethal levels of ammonia induces secondary stress responses and altered the organoleptic characteristics of pacu flesh. Nevertheless, a recovery period of 10 days was sufficient to allow for a complete restoration of the homeostasis and organoleptic characteristics of the fillet.


Abreu, J.S.; Esteves, F.R.; Urbinati, E.C. 2012. Stress in pacu exposed to ammonia in water. Revista Brasileira de Zootecnia, 41(7): 1555í 1560.

AOAC. 1995. Official methods and recommended practices of the American Oil Chemist’s Society, Ed. D. Feistane, Washington D.C.

Baldisserotto, B.; Martos-Sitcha, J.A.; Menezes, C.C.; Toni, C.; Prati, R.L.; Garcia, L.O.; Salbego, J.; Mancera, J.M.; Martí­­nez-Rodrí­­guez, G. 2014. The effects of ammonia and water hardness on the hormonal, osmoregulatory and metabolic responses of the freshwater silver catfish Rhamdia quelen. Aquatic Toxicology, 152(1): 341í 352.

Barcellos, L.J.G.; Souza, S.M.G.; Woehl, V.M. 2000. Estresse em peixes: Fisiologia da Resposta ao Estresse, Causas e Consequências (Revisão). Boletim do Instituto de Pesca, 26(1): 99í 111.

Barbieri, E.; Bondioli, A.C.V. 2015. Acute toxicity of ammonia in Pacu fish (Piaractus mesopotamicus, Holmberg, 1887) at different temperatures levels. Aquaculture Research, 46(3): 565-571.

Barbieri, E. and Doi, S.A. 2012. Acute toxicity of ammonia on juvenile cobia (Rachycentron canadum, Linnaeus, 1766) according to the salinity. Aquaculture International, 20(2): 373-382.

Barton, B.A. 2002. Stress in Fishes: A Diversity of Responses with Particular Reference to Changes in Circulating Corticosteroids. Integrative and Comparative Biology, 42(3): 517í 525.

Bendschneider, K.; Robinson, R.J. 1952. A new spectrophotometric method for the determination of nitrite in sea water. Journal of Marine Research, 11(1): 87í 96.

Bittencourt, F.; Feiden, A.; Signor, A.A. Boscolo, W.R.; Lorenz, E.K.; Maluf, M.L.F. 2010. Densidade de estocagem e parí­¢metros eritrocitários de pacus criados em tanques-rede. Revista Brasileira de Zootecnia, 39(11): 2323-2329.

Borges, A.; Medina, B.G.; Conte-Junior, C.A.; Freitas, M.Q. 2014. Aceitação sensorial e perfil de textura instrumental da carne cozida do pacu (Piaractus mesopotamicus), do tambaqui (Colossoma macropomum) e do seu hibrido tambacu eviscerados e estocados em gelo. Revista Brasileira de Ciência Veterinária, 20(3): 160í 165.

Brandão, F.R.; Gomes, L.C.; Chagas, E.C. 2006. Respostas de estresse em pirarucu (Arapaima gigas) durante práticas de rotina em piscicultura. Acta Amazonica, 36(3): 349í 356.

Cavero, B.A.S.; Pereira-Filho, M.; Bordinhon, A.M.; Fonseca, F.A.L.; Ituassú, D.R.; Roubach, R.; Ono, E.A. 2004. Tolerí­¢ncia de juvenis de pirarucu ao aumento da concentração de amônia em ambiente confinado. Pesquisa Agropecuária Brasileira, 39(5): 513í 516.

Chen, J.Z.; Zhang, X.L.; Hu, G.D.; Qu, J.H.; Fan, L.M.; Song, C. 2011. The immune response of GIFT Oreochromis niloticus and its susceptibility to Streptococcus iniae under stress in different ammonia. Journal of Ecology and Environmental Sciences, 20(6): 629-634.

Ching, B.; Chew, S.F.; Wong, W.P.; Ip, Y.K. 2009. Environmental ammonia exposure induces oxidative stress in gills and brain of Boleophthalmus boddarti (mudskipper). Aquatic Toxicology, 95(3): 203í 212.

Colt, J. 2002. List of spreadsheets prepared as a complement. In: WEDEMEYER G.A. (ed) Fish hatchery management. American Fisheries Society. p. 91í 186.

Contreras-Guzmán, E.S. 1994. Bioquí­­mica de Pescados e Derivados. Jaboticabal, FUNEP, 409 p.

Dabrowski, K.R. 1986. Active metabolism larval and juvenile fish: ontogenetic changes, effect of water temperature and fasting. Fish Physiology and Biochemistry, 1(3): 125í 144.

Dal Bosco. A.; Mugnai, C.; Mourvaki, E.; Castellini, C. 2012. Seasonal changes in the fillet fatty acid profile and nutritional characteristics of wild Trasimeno Lake goldfish (Carassius auratus L.). Food Chemistry, 132(2): 830í 834.

Damato, M. and Barbieri, E. 2011. Determinação da toxicidade aguda de cloreto de amônia para uma espécie de peixe (Hyphessobrycon callistus) indicadora regional. O Mundo da Saúde. 35(4): 401-407.

Daniel, A.P.; Veeck, A.P.L.; Klein, B.; Ferreira, L.F.; Cunha, M.A.; Parodi, T.V.; Zeppenfeld, C.C.; Schmidt, D.; Caron, B.O.; Heinzmann, B.M.; Baldisserotto, B.; Emanuelli, T. 2014. Using the Essential Oil of Aloysia triphylla (L’Her.) Britton to Sedate Silver Catfish (Rhamdia quelen) during Transport Improved the Chemical and Sensory Qualities of the Fish during Storage in Ice. Journal of Food Science, 79(6): 1205-1211.

Da Rocha, A.M.; Salomão De Freitas, D.P.; Burns, M. Vieira, J.P.; De La Torre, F.R.; Monserrat, J.M. 2009. Seasonal and organ variations in antioxidant capacity, detoxifying competence and oxidative damage in freshwater and estuarine fishes from Southern Brazil. Comparative Biochemistry and Physiology Part C, 150(4): 512í 520.

Dutcosky, S.D. 2007. Análise Sensorial de Alimentos. 2ª ed. Curitiba: Champagnat. 246p.

Eaton, A.D.; Clesceri, L.S.; Greenberg, A.E. 1995. Standard methods for the examination of water and wastewater, 19a ed. Baltimore: United Book Press, Inc.

Foss, A.; Evensen, T.H.; Vollen, T.; í­Ëœiestad, V. 2003. Effects of chronic ammonia exposure on growth and food conversion efficiency in juvenile spotted wolffish. Aquaculture, 228(3-4): 215í 224.

Freitas, J.M.A.; Higuchi, L.H.; Feiden, A.; Maluf, M.L.F.; Dallagnol, J.M.; Boscolo, W.R. 2011. Salga seca e úmida de filés de pacu (Piaractus mesopotamicus). Semina. Ciências Agrárias, 32(2): 613í 620.

Gisbert, E.; Rodriguez, A.; Cardona, L.; Huertas, M.; Gallardo, M.A.; Sarasquete, C.; Sala-Rabanal, M.; Ibarz, A.; Sánchez, J.; Castello-Orvay, F. 2004. Recovery of Siberian sturgeon yearlings after an acute exposure to environmental nitrite: changes in the plasmatic ionic balance, Na+í K+ ATPase activity, and gill histology. Aquaculture, 239(1-4): 141-154

Godoy, M.P. 1975. Peixes do Brasil: subordem Characoidei: bacia do rio Mogi-Guassu. Piracicaba: Franciscana, 1í 4, 216p.

Goldenfarb, P.B.; Bowyer, F.P.; Hall, E.; Brosious, E. 1971. Reproducibility in the hematology laboratory: the microhematocrit determination. American Journal of Clinical Pathology, 56(1): 35í 39.

Haywood, G.P. 1983. Ammonia Toxicity in Teleost Fishes: A Review. Canadian Technical Report of Fisheries and Aquatic Sciences, 1(4): 35p.

Hegazi, M.M.; Attia, Z.I.; Ashour, O.A. 2010. Oxidative stress and antioxidant enzymes in liver and white muscle of Nile tilapia juveniles in chronic ammonia exposure. Aquatic Toxicology, 99(2): 118í 125.

Jomori, R.K.; Carneiro, D.J.; Malheiros, E.B.; Portella, M.C. 2003. Growth and survival of pacu Piaractus mesopotamicus (Holmberg, 1887) juveniles reared in ponds or at different initial larviculture periods indoors. Aquaculture, 22(1-4): 277í 287.

Kristoffersen, S.; Tobiassen, T.; Steinsund, V.; Olsen, R.L. 2006. Slaughter stress, postmortem muscle pH and rigor development in farmed Atlantic cod (Gadus morhua L.). International Journal of Food Science & Technology, 41(7): 861í 864.

Li, B.; Fan, Q.; Yang, K.; Zhang, L.; Guo, H.; Wang, Q.; Gao, Y.; Zhu, S.; Fan, W. 2011. Effects of chronic ammonia stress on foraging, growth, and haematological parameters of Yellow Catfish (Pelteobagrus fulvidraco) juveniles. Chinese Journal of Applied and Environmental Biology, 6(1): 824-829.

Li, M.; Chen, L.Q.; Qin, J.G.; Li, E.C.; Yu, N.; Du, Z.Y. 2013. Growth performance, antioxidant status and immune response in darkbarbel catfish Pelteobagrus vachelli fed different PUFA/vitamin E dietary levels and exposed to high or low ammonia. Aquaculture, 406-407(1): 18í 27.

Li, M.; Yu, N.; Qin, J.G.; Li, E.; Du, Z.; Chen, L. 2014. Effects of ammonia stress, dietary linseed oil and Edwardsiella ictaluri challenge on juvenile darkbarbel catfish Pelteobagrus vachelli. Fish and Shellfish Immunology, 38(1): 158í 165.

Li, M.; Gong, S.; Li, Q.; Yuan, L.; Meng, F.; Wang, R. 2016. Ammonia toxicity induces glutamine accumulation, oxidative stress and immunosuppression in juvenile yellow catfish Pelteobagrus fulvidraco. Comparative Biochemistry and Physiology - Part C, 183-184: 1-6.

Liew, H.J.; Sinha, A.K.; Nawata, C.M.; Blust, R.; Wood, C.M.; Boeck, G.D. 2013. Differential responses in ammonia excretion, sodium fluxes and gill permeability explain different sensitivities to acute high environmental ammonia in three freshwater teleosts. Aquatic Toxicology, 126(1): 63í 76.

Maltez, L.C.; Stringhetta, G.R.; Enamorado, A.D.; Okamoto, M.H.; Romano, L.A.; Monserrat, J.M.; Sampaio, L.A.; Garcia, L. 2017. Ammonia exposure and subsequent recovery trigger oxidative stress responses in juveniles of Brazilian flounder Paralichthys orbignyanus. Fish Physiology and Biochemistry, 43(6): 1747-1759.

Medeiros, R.S., Lopez, B.A., Sampaio, L.A., Romano, L.A., Rodrigues, R.V. 2016. Ammonia and nitrite toxicity to false clownfish Amphiprion ocellaris. Aquaculture International, 24(4): 1-9.

Miron, D.S.; Moraes, B.; Becker, A.G.; Crestani, M.; Spanevello, R.; Loro, V.L.; Baldisserotto, B. 2008. Ammonia and pH effects on some metabolic parameters and gill histology of silver catfish, Rhamdia quelen (Heptapteridae). Aquaculture, 277(3-4): 192í 196.

Narra, M.R.; Rajender, K.; Reddy, R.R.V.; Rao, J.; Begum, G. 2015. The role of vitamin C as antioxidant in protection of biochemical and haematological stress induced by chlorpyrifos in freshwater fish Clarias batrachus. Chemosphere, 132(1): 172í 178.

Oakes, K.D. and Van Der Kraak, G.J. 2003. Utility of the TBARS assay in detecting oxidative stress in white sucker (Catostomus commersoni) populations. Aquatic Toxicology, 63(4): 447í 463.

Oliveira, L.M.F.S.; Leal, R.S.; Mesquita, T.C.; Pimenta, M.E.S.G.; Zangeronimo, M.G.; Sousa, R.V.; Alvarenga, R.R. 2014. Effect of ractopamine on the chemical and physical characteristics of pacu (Piaractus mesopotamicus) steaks. Arquivos Brasileiros de Medicina Veterinária e Zootecnia, 66(1): 185í 194.

Paust, L.O.; Foss, A.; Imsland, A.K. 2011. Effects of chronic and periodic exposure to ammonia on growth, food conversion efficiency and blood physiology in juvenile Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture, 315(3-4): 400-406.

Pinto, D.S.B., Maltez, L.C., Stringhetta, G.R., Pellegrin, L., Nitz, L.F., Figueiredo, M.R.C., Garcia, L.O. 2016. Ammonia and nitrite acute toxicity in juvenile piavuçu Leporinus macrocephalus (Actinopterygii, Anostomidae). Pan-American Journal of Aquatic Sciences 11(4): 292-300.

Pizato, S.; Kraieski, J.; Sarmento, C.; Prentice, C. 2012. Avaliação da qualidade tecnológica apresentada por tilápia do Nilo (Oreochromis niloticus) enlatada. Semina: Ciências Agrárias, 33(2): 667í 674.

Poli, B.M.; Parisi, G.; Scappini, F.; Zampacavallo, G. 2005. Fish welfare and quality as affected by pre-slaughter and slaughter management. Aquaculture International, 13(1-2): 29í 49.

Pottinger, T.G. 2001. Effects of husbandry stress on flesh quality indicators in fish. In: Kestin, S.; Warriss, P.(eds.) Farmed Fish Quality. p.145í 161.

Povh, J.A.; Ribeiro, R.P.; Lopera-Barrero, N.M.; Gomes, P.C.; Blanck, D.V.; Vargas, L.; Jacometo, C.B.; Lopes, T.S. 2009. Monitoramento da variabilidade genética do pacu, Piaractus mesopotamicus, do programa de aumento do estoque do rio Paranapanema. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 61(5): 1191í 1195.

Rama, S.; Manjabhat, S.N. 2014. Protective effect of shrimp carotenoids against ammonia stress in common carp, Cyprinus carpio. Ecotoxicology and Environmental Safety, 107(1): 207í 213.

Ramos Filho, M.M.; Ramos, M.I.L.; Hiane, P.A.; Souza, E.M.T. 2008. Perfil lipí­­dico de quatro espécies de peixes da região pantaneira de Mato Grosso do Sul. Ciência e Tecnologia de Alimentos, 28(2): 361í 365.

Randall, D.J.; Tsui, T.K.N. 2002. Ammonia toxicity in fish. Marine Pollution Bulletin, 45(1-12): 17í 23.

Ribas, L.; Flos, R.; Reig, L.; Mackenzie, S.; Barton, B.A.; Tort, L. 2007. Comparison of methods for anaesthetizing Senegal sole (Solea senegalensis) before slaughter: Stress responses and final product quality. Aquaculture, 269(1-4): 250í 258.

Rodrigues, R.V.; Romano, L.A.; Schwarz, M.H.; Delbos, B.; Sampaio, L.A. 2014. Acute tolerance and histopathological effects of ammonia on juvenile maroon clownfish Premnas biaculeatus (Block 1790). Aquaculture Research, 45(7): 1133-1139

Saidi, S.A.; Azaza, M.S.; Abdelmouleh, A.; Pelt, J.V.; Kraiem, M.M.; El-Feki, A. 2010. The use of tuna industry waste in the practical diets of juvenile Nile tilapia (Oreochromis niloticus, L.): effect on growth performance, nutrient digestibility and oxidative status. Aquaculture Research, 41(12): 1875í 1886.

Sigholt, T.; Erikson, U.; Rustad, T.; Johansen, S.; Nordtvedt, T.S.; Seland, A. 1997. Handling stress and storage temperature affect meat quality of farmed-raised Atlantic salmon (Salmo salar). Journal of Food Science, 62(4): 898í 905.

Sinha, A.K.; Abdelgawad, H.; Giblen, T.; Zinta, G.; Rop, M.; Asard, H.; Blust, R.; Boeck, G. 2014. Anti-Oxidative defences are modulated differentially in three freshwater teleosts in response to ammonia- induced oxidative stress. PLoS ONE, 9(4): e95319.

Schram, E.; Roques, J.A.C.; Abbink, W.; Spanings, T.; Vries, P.; Bierman, S.; Vis, H.V.; Flik, G. 2010. The impact of elevated water ammonia concentration on physiology, growth and feed intake of African catfish (Clarias gariepinus). Aquaculture, 306(1-4): 108í 115.

Schram, E.; Roques, J.A.C.; Kuijk, T.V.; Abbink, W.; Heul, J.V.; Vries, P.; Bierman, S.; Vis, H.V.; Flik, G. 2014. The impact of elevated water ammonia and nitrate concentrations on physiology, growth and feed intake of pikeperch (Sander lucioperca). Aquaculture, 420í 421(1): 95í 104.

Souza, V.L.; Urbinati, E.C.; Gonçalves, D.C.; Silva, P.C. 2002. Composição corporal e í­­ndices biométricos do pacu, Piaractus mesopotamicus Holmberg, 1887 (Osteichthyes, Characidae) submetido a ciclos alternados de restrição alimentar e realimentação. Acta Scientiarum, 24(2): 533í 540.

Stone, H.; Sidel, J.L. 2004. Sensory evaluation practices. Academic Press: London. 311 p.

Tavares-Dias, M.; Sandrim, E.F.S.; Moraes, F.R.; Carneiro, P.C.F. 2001. Physiological Responses of "Tambaqui” Colossoma macropomum (Characidae) to acute stress. Boletim do Instituto de Pesca, 27(1): 43í 48.

Takahashi, L.S.; Abreu, J.S.; Biller, J.D.; Urbinati, E.C. 2006. Efeito do ambiente pós-transporte na recuperação dos indicadores de estresse de pacus juvenis, Piaractus mesopotamicus. Acta Scientiarum. Animal Sciences, 28(4): 469í 475.

Tanamati, A.; Stevanato, F.B.; Visentainer, J.E.L.; Matsushita, M.; Souza, N.E.; Visentainer, J.V. 2009. Fatty acid composition in wild and cultivated pacu and pintado fish. European Journal of Lipid Science and Technology, 111(2): 183í 187.

Terlouw, E.M. C.; Arnould, C.; Auperin, B.; Berri, C.; Le Bihan-Duval, E.; Deiss, V.; Lefí­¨vre, F.; Lensink, B.J. & Mounier, L. 2008. Pre-slaughter conditions, animal stress and welfare: current status and possible future research. Animal, 2(10): 1501-1517.

UNESCO 1983. Chemical methods for use in marine environmental monitoring. Manual and Guides 12, Intergovernamental Oceanographic Commissiony. Paris, France. 53 p.

Urbinati, E.C.; Goncalves, F.D.; Takahashi, L.S. 2010. Pacu Piaractus mesopotamicus. In: Baldisseroto B, Gomes, L.C. (Org.). Espécies nativas para piscicultura no Brasil. 2a ed revista e ampliada. UFSM, Santa Maria. UFSMp. 1í 606.

Veeck, A.P.L.; Garcia, L.O.; Baldisserotto, B.; Zaniboni Filho, E.; Emanuelli, T. 2013. Proximate composition and lipid stability of dourado (Salminus brasilensis, Cuvier, 1817) fillets exposed to different levels of ammonia and oxygen in vivo. Journal of the Science of Food and Agriculture, 93(10): 2590í 2595.

Wedemeyer, G. 2012. Physiology of fish in intensive culture systems. Springer Science & Business Media, Dordrecht. 232p.

Wendelaar Bonga, S.E. 1997. The stress response in fish. Physiological Reviews, 77(3): 591í 625.
Wilkie, M.P.; Wood, C.M. 1996. The adaptations of fish to extremely alkaline environments. Comparative Biochemistry and Physiology Part B, 113(4): 665í 673.

Yang, W.; Xiang, F.; Sun, H.; Chen, Y.; Minter, E.; Yang, Z. 2010. Changes in the selected hematological parameters and gill Na+/K+ ATPase activity of juvenile crucian carp Carassius auratus during elevated ammonia exposure and the post-exposure recovery. Biochemical Systematics and Ecology, 38(4): 557í 562.

Zar, J.H. Biostatistical Analysis, 3rd ed. Prentice-Hall, New Jersey, USA, 1996, 662p.

Zhang, L.; Feng, L.; Jiang, W.D.; Liu, Y.; Jiang, J.; Li, S.H.; Tang, L.; Kuang, S.Y.; Zhou, X.Q. 2016. The impaired flesh quality by iron deficiency and excess is associated with increasing oxidative damage and decreasing antioxidant capacity in the muscle of young grass carp (Ctenopharyngodon idellus). Aquaculture Nutrition, 22(1): 191-201.