Digestible energy and inclusion of crude glycerin in diets for curimbatá juveniles

Authors

  • Rafael Ernesto BALEN Universidade Federal do Paraná - UFPR, Programa de Pós-graduação em Zoologia, Centro Politécnico
  • Gilson BUENO JUNIOR Universidade Federal do Paraná, Programa de Pós-graduação em Aquicultura e Desenvolvimento Sustentável http://orcid.org/0000-0003-0960-2721
  • Leda Maria Saragiotto COLPINI Universidade Federal do Paraná, Programa de Pós-graduação em Tecnologia de Bioprodutos Agroindustriais http://orcid.org/0000-0003-3660-188X
  • Robie Allan BOMBARDELLI Universidade Estadual do Oeste do Paraná - UNIOESTE, Centro de Engenharia e Ciências Exatas http://orcid.org/0000-0002-5701-1881
  • Lilian Carolina Rosa da SILVA Universidade Federal do Paraná, Programa de Pós-graduação em Aquicultura e Desenvolvimento Sustentável
  • Fábio MEURER Universidade Federal do Paraná - UFPR, Programa de Pós-graduação em Zoologia, Centro Politécnico / Universidade Federal do Paraná, Programa de Pós-graduação em Aquicultura e Desenvolvimento Sustentável http://orcid.org/0000-0002-8389-9888

DOI:

https://doi.org/10.20950/1678-2305.2017v43n3p347

Keywords:

Characiformes, non-protein energy, glycerol, native fish

Abstract

The curimbatá is an important fishery resource, however, little is known about its nutritional requirements. This work aimed to determine the apparent digestibility coefficient (ADC) and the effect of the inclusion of crude glycerin (CG) in the diet for curimbatá (Prochilodus lineatus) juveniles. Feces were collected from fish fed with reference diet based on ingredients of plant origin and with a test diet, having the inert marker chromium (III) oxide (0.1%). In the growth experiment, 750 juveniles (18.71 ± 2.70 g) were used in a completely randomized design, with six treatments (diets containing 0, 4, 8, 12, 16, and 20% CG) and five repetitions, for 64 days. For P. lineatus, CG presented ADC of 0.76 for crude energy and digestible energy of 2,850.99 kcal kg-1 of the diet. The different levels of inclusion affected the final weight (FW), feed conversion rate (FCR), specific growth rate (SGR), and weight gain (WG), in addition to blood levels of glucose and triglycerides. Regression analysis showed a negative linear effect of the diets on FW, SGR, and WG, and a positive linear effect on FCR. Crude glycerin can be used as an energy source and its inclusion in 4% of the diet improves the productive performance of curimbatá.

References

ASHADE, O.O.; OSINEYE, O.M. 2013 Effect of replacing maize with cocoa pod husk in the nutrition of Oreochromis niloticus. Journal of Fisheries and Aquatic Science, 8(1): 73-79.

BALDISSEROTTO, B. 2009 Fisiologia de peixes aplicada í­Â  piscicultura. 2. ed. Santa Maria: UFSM. 352p.

BALEN, R.E.; TETU, P.N.; BOMBARDELLI, R.A.; POZZA, P.C.; MEURER, F. 2014 Digestible energy of crude glycerol for pacu and silver catfish. Ciência Rural, 44(8): 1448-1451.

BERNARDES, C.L.; Pí­Å¡BLIO, J.Y. 2012 Proteí­­na bruta no desenvolvimento de curimbas (Prochilodus scrofa). Semina: Ciências Agrárias, 33(1): 381-390.

BESERRA, V.A.; CESAR, A.S.; PERES, A.A.C. 2016 Adoção da glicerina bruta na dieta animal e seu
impacto no produto final. Archivos de Zootecnia, 65(250): 259-266.

BICUDO, A.J.A.; CYRINO, J.E.P. 2009 Estimating amino acid requirement of Brazilian freshwater
fish from muscle amino acid profile. Journal of the World Aquaculture Society, 40(6): 818-823.

BIJVELDS, M.J.C.; VAN DER VELDEN, J.A.; KOLAR, Z.I.; FLIK, G. 1998 Magnesium transport in freshwater teleosts. The Journal of Experimental Biology, 201(13): 1981-1990.

BOMFIM, M.A.D.; LANNA, E.A.T.; SERAFINI, M.A.; RIBEIRO, F.B.; PENA, K.S. 2005 Proteí­­na bruta
e energia digestí­­vel em dietas para alevinos de curimbatá (Prochilodus affinis). Revista Brasileira
de Zootecnia, 34(6): 1795-1806.

BONE, Q.; MOORE, R.H. 2008 Biology of fishes. 3rd ed. New York: Taylor & Francis Group. 478p.

CASTRO, R.M.C.; VARI, R.P. 2003 Family Prochilodontidae. In: REIS, R.E.; KULLANDER, S.O.; FERRARIS JUNIOR, C.J. (Orgs.). Check list of the freshwater fishes of South and Central America.
Porto Alegre: EDIPUCRS. p. 65-70.

CASTRO, R.M.C.; VARI, R.P. 2004 Detritivores of the South American fish family Prochilodontidae
(Teleostei: Ostariophysi: Characiformes): a phylogenetic and revisionary study. Smithsoniam
contribuitions to Zoology, n. 622. Washington, D. C.: Smithsoniam Books. 189p.

COSTA, D.V.; DIAS, J.; COLEN, R.; ROSA, P.V.; ENGROLA, S. 2017 Partition and metabolic fate of dietary glycerol in muscles and liver of juvenile tilápia. Archives of Animal Nutrition, 71(2): 165-174.

COSTA, D.V.; PAULINO, R.R.; OKAMURA, D.; OLIVEIRA, M.M.; VIEIRA E ROSA, P. 2015 Growth and energy metabolism of Nile tilapia juveniles fed glycerol. Pesquisa Agropecuária Brasileira, 50(5): 347-354.

EVANS, D.H.; PIERMARINI, P.M.; CHOE, K.P. 2005 The multifunctional fish gill: dominant
site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste.
Physiological Reviews, 85(1): 97-177.

FABREGAT, T.E.H.P.; PEREIRA, T.S.; BOSCOLO, C.N.; ALVARADO, J.D.; FERNANDES, J.B.K. 2011 Substituição da farinha de peixe pelo farelo de soja em dietas para juvenis de curimba. Boletim do Instituto de Pesca, 37(3): 289-294.

FARIA, A.C.E.A.; BENEDITO, E. 2011 Quality and digestibility of food ingested by various trophic fish groups in the Upper Paraná River floodplain. Revista de Biologí­­a Tropical, 59(1):
85-101.

FROESE, R.; PAULY, D. Editors. 2011 FishBase. World Wide Web electronic publication. Disponí­­vel
em: <www.fishbase.org> Acesso em: 4 jun. 2014.

GALDIOLI, E.M.; HAYASHI, C.; SOARES, C.M.; FURUYA, W.M.; NAGAE, M.Y. 2000 Diferentes fontes protéicas na alimentação de alevinos de curimba (Prochilodus lineatus V.). Acta Scientiarum, 22(2): 471-477.

GONí­"¡ALVES, L.U.; CEROZI, B.S.; CASTRO SILVA, T.S.; ZANON, R.B.; CYRINO, J.E.P. 2015 Crude
glycerin as dietary energy source for Nile tilapia. Aquaculture, 437(1): 230-234.

HAGOPIAN, K.; RAMSEY, J.J.; WEINDRUCH, R.2008 Enzymes of glycerol and glyceraldehyde metabolism in mouse liver: effects of caloric restriction and age on activities. Bioscience
Reports, 28(2): 107í 115.

HARDY, R.W.; SULLIVAN, C.V.; KOZIOL, A.M.1987 Absorption, body distribution, and excretion of dietary zinc by rainbow trout (Salmo gairdneri). Fish Physiology and Biochemistry, 3(3): 133-143.

HICKMAN JUNIOR, C.P. 1968 Ingestion, intestinal absorption and elimination of sea water and salts in the southern flounder, Paralichthys lethostigma. Canadian Journal of Zoology, 46(3): 457-466.

JUN, S.A.; MOON, C.; KANG, C.H.; KONG, S.W.; SANG, B.I.; UM, Y. 2010 Microbial fed-batch
production of 1,3-propanediol using raw glycerol with suspended and immobilized Klebsiella pneumoniae. Applied Biochemistry and Biotechnology, 161(1-8): 491-501.

KAUNE, R.; HENTSCHEL, H. 1987 Stimulation of renal phosphate secretion in the stenohaline
freshwater teleost: Carassius auratus gibelio Bloch. Comparative Biochemistry and Physiology Part A: Physiology, 87(2): 359-362.

KIMURA, F.T.; MILLER, V.L. 1957 Improved determination of chromic oxide in cow feed and
feces. Journal of Agricultural Foodstuffs Chemistry, 5(3): 216.

LI, M.H.; MINCHEW, C.D.; OBERLE, D.F.; ROBINSON, E.H. 2010 Evaluation of glycerol from biodiesel production as a feed ingredient for Channel catfish, Ictalurus punctatus. Journal of the World Aquaculture Society, 41(1): 130-136.

LIN, E.C.C. 1977 Glycerol utilization and its regulation in mammals. Annual Review of
Biochemistry, 46: 765-795.

LUZ, K.D.G.; ABUJANRA, F.; AGOSTINHO, A.A.; GOMES, L.C. 2001 Caracterização trófica da
ictiofauna de três lagoas da planí­­cie aluvial do alto rio Paraná, Brasil. Acta Scientiarum, 23(2):
401-407.

MENTON, D.J.; SLINGER, S.J.; HILTON, J.W. 1986 Utilization of free glycerol as a source of dietary energy in rainbow trout (Salmo gairdneri). Aquaculture, 56(3-4): 215-227.

MEURER, F.; FRANZEN, A.; PIOVESAN, P.; ROSSATO, K.A.; SANTOS, L.D. 2012 Apparent energy digestibility of glycerol from biodiesel production for Nile tilapia (Oreochromis niloticus,Linnaeus 1758). Aquaculture Research, 43(11):1734-1737.

MEURER, F.; TOVO NETO, A.; SILVA, L.C.R.;CAGOL, L.; THEISEN, M.T.; SANTOS, L.D.2016 Crude glycerol in diets for Nile tilapia sex reversal (Oreochromis niloticus, Linnaeus 1758).Aquaculture Research, 47(8): 2682-2685.

MORAES, M.F.P.G.; BARBOLA, I.F.; GUEDES,E.A.C. 1997 Alimentação e relações morfológicas
com o aparelho digestivo do "curimbatá"Prochilodus lineatus (Valenciennes) (Osteichthyes,
Prochilodontidae), de uma lagoa do sul do Brasil.Revista Brasileira de Zoologia, 14(1): 169-180.

MPA (MINISTÉRIO DA PESCA E AQUICULTURA 2013 Boletim estatí­­stico da pesca e aquicultura
2011. Disponí­­vel em: <http://www.mpa.gov.br/images/Docs/Informacoes_e_Estatisticas/
Boletim%20MPA%202011FINAL.pdf> Acesso em: 4 jun. 2014.

NEU, D.H.; FURUYA, W.M.; YAMASHIRO, D.; BITTENCOURT, F.; MORO, E.B.; FERNANDES, D.R.A.; BOSCOLO, W.R.; FEIDEN, A. 2012a Glicerol na dieta de alevinos de tilápia do Nilo (Oreochromis niloticus). Revista Agrarian, 5(17):288-294.

NEU, D.H.; FURUYA, W.M.; BOSCOLO, W.R.; BUENO, G.W.; POTRICH, F.R.; FEIDEN, A. 2012b Energia digestí­­vel de diferentes fontes de glicerol para a Tilápia-do-Nilo (Oreochromis niloticus). Revista Brasileira de Ciências Agrárias, 7(1): 174-179.

NEU, D.H.; FURUYA, W.M.; BOSCOLO, W.R.; POTRICH, F.R.; LUI, T.A.; FEIDEN, A. 2013 Glycerol inclusion in the diet of Nile tilapia (Oreochromis niloticus) juveniles. Aquaculture Nutrition, 19(2): 211-217.

NRC (NATIONAL RESEARCH COUNCIL 2011 Nutrient requirements of fish and shrimp.
Washington: The National Academies Press. 376p.

OLIVEIRA, J.S.; ANTONIASSI, R.; FREITAS, S.C.; Mí­Å“LLER, M.D. 2013 Composição quí­­mica da glicerina produzida por usinas de biodiesel no Brasil e potencial de uso na alimentação animal.
Ciência Rural, 43(3): 509-512.

PAGLIARO, M.; ROSSI, M. 2010 The future of glycerol - new usages for a versatile raw material. 2nd ed.Cambridge: RSC Publishing, 192p.

PEREIRA, P.A.P.; ANDRADE, J.B. 1998 Fontes,reatividade e quantificação de metanol e etanol
na atmosfera. Quí­­mica Nova, 21(6): 744-754

PRASAD, N.; BHADAURIA, D. 2013 Renal phosphate handling: physiology. Indian Journal of Endocrinology and Metabolism, 17(4): 620-627.

PYLE, D.J.; GARCIA, R.A.; WEN, Z. 2008 Producing docosahexaenoic acid (DHA)-rich algae from
biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. Journal of Agricultural and Food Chemistry, 56(11): 3933-3939.

ROBERGS, R.A.; GRIFFIN, S.E. 1998 Glycerol: biochemestry, pharmakokinetics and clinical and practical applications. Sports Medicine 26(3): 145-167.

SÁ, M.V.C. 2012 Limnocultura: limnologia para aquicultura. Fortaleza: Edições UFC, 218p.

SANTIBÁí­"˜EZ, C.; VARNERO, M.T.; BUSTAMANTE, M. 2011 Residual glycerol from biodiesel
manufacturing, waste or potential source of bioenergy: a review. Chilean Journal of Agricultural Research, 71(3): 469-475.

SVERLIJ, S.; ROS, A.; ORTI, G. 1993 Sinopsis de los datos biológicos y pesqueros del sábalo
Prochilodus lineatus (Valenciennes, 1847). FAO Sinopsis sobre la Pesca, 154: 1-64. Disponí­­vel em:
< http://www.fao.org/docrep/017/t0808s/t0808s.pdf > Acesso em: 27 jul. 2015.

TAVARES-DIAS, M. 2015 Parí­¢metros sanguí­­neos de referência para espécies de peixes cultivados. In: TAVARES-DIAS, M. & MARIANO, W.S. (Org.). Aquicultura no Brasil: novas perspectivas. Vol. 1.
São Carlos: Editora Pedro & João. p. 20.

UFV (UNIVERSIDADE FEDERAL DE VIí­"¡OSA 2007 SAEG 9.1: Sistema de Análises Estatí­­stica. Viçosa:
Fundação Arthur Bernardes. (CD-ROM). YANG, F.; HANNA, M.A.; SUN, R. 2012 Value-added
uses for crude glycerolí a byproduct of biodiesel production. Biotechnology for Biofuels,
5: 13.

ZIJLSTRA, R.T.; MENJIVAR, K.; LAWRENCE, E.; BELTRANENA, E. 2009 The effect of feeding crude glycerol on growth performance and nutrient digestibility in weaned pigs. Canadian Journal of Animal Science, 89(1): 85-89.

Published

2017-09-25

Most read articles by the same author(s)