PROBIOTIC Bacillus subtilis AND Lactobacillus plantarum IN DIET OF NILE TILAPIA
DOI:
https://doi.org/10.20950/1678-2305.2019.45.1.252Keywords:
microbiologia, nutrição, desempenho zootécnico, expressão gênica, pós-larvaAbstract
The aim of this study was to evaluate the effects of a probiotic, composed of Bacillus subtilis and Lactobacillus plantarum in Nile tilapia fry during the sex reversal phase under stress conditions caused by high stocking density. This experiment was conducted in the Fisheries Institute of São Paulo. The experiment design was completely randomized with four treatments: 1) probiotic added feed, 2) probiotic added to water, 3) probiotic added to feed and water and 4) control diet; with three replicates. The variables analyzed were: final weight, total length, specific growth rate, survival, intestinal microbiology and gene expression of TNF-α and HSP-70. The results of the zootechnical performance of growth and gene expression did not show significant differences between treatments in the parameters evaluated (P>0.05). In the intestinal tract of fry raised in water with added probiotic, log10 CFU (7.72 ± 0.51) count of Bacillus spp. was higher than with other treatments which themselves did not differ significantly. It was concluded that the addition of a probiotic of Bacillus subtilis and Lactobacillus plantarum in the feed or water of Nile tilapia fry during the sex reversal phase did not affect the zootechnical performance of growth or expression the genes studied, but modified the intestinal microbiota.
References
Almeida, D. B.; Moreira, H. L. M.; Costa, M. A. P.; Vaz, B. S.; Moreira, C. G. A.; Oliveira, P. A.; Silva, J. C; Tavares, R. A; Bassini, L. N. 2009. Loci de caracteres quantitativos (qtl) em peixes. Arquivos de Ciências Veterinárias e Zoologia da UNIPAR, 12(2): 175-186. https://doi.org/10.25110/arqvet.v12i2.2009.2973.
Araujo, E. P. 2015. Plasma sanguíneo desidratado na alimentação da Tilápia-do- Nilo. São Paulo Brasil. São Paulo 51f. (Dissertação de Mestrado. Universidade Estadual Paulista Julio de Mesquita Filho, Faculdade de Medicina Veterinária e Zootecnia). Disponível em :< https://repositorio.unesp.br/handle/11449/132073> Acesso em: 11 jun. 2018.
Carneiro, P. C. F.; Martins, M. I. E. G.; Cyrino, J. E. P. 1999. Estudo de Caso da Criação Comercial de Tilápia Vermelha em Tanques-Rede-Avaliação Econômica. Informações econômicas-governo do estado de São Paulo Instituto de Economia Agrícola, 29, 52-64.
Dahlhoff, E.P. 2004. Biochemical indicators of stress and metabolism: applications formarine ecological studies. Annual Review of Physiology, 66: 183-207. https://doi.org/10.1146/annurev.physiol.66.032102.114509.
Dawood, M. A.; Koshio, S.; Esteban, M. Á. 2017. Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Reviews in Aquaculture. https://doi.org/10.1111/raq.12209.
Dawood, M. A.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; El Basuini, M. F., Hossain, M. S.; Moss, A. S. 2016. Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major. Fish & Shellfish Immunology, 49, 275-285. https://doi.org/10.1111/raq.12209.
Elewaut D.; Didonato Ja.; Kim Jm.; Truong F.; Eckmann L.; Kagnoff Mf. 1999. NF-kB is a central regulator of the intestinal epithelial cell innate immune response induced by infection with entero invasive bacteria. The Journal of Immunology, 163(3): 1457-1466.
Essa M.A.; El-Serafy S.S.; El-Ezabi M.M.; Daboor S.M.; Esmael N.A. 2010. Effect of different dietary probiotics on growth, feed utilization and digestive enzymes activities of Nile tilapia, Oreochromis niloticus. Journal of Arabian Aquaculture Society, 5: 143í 161.
Fagundes, L. C.; Eto, S. F.; Marcusso, P. F.; Fernandes, D. C.; Marinho-Neto, F. A.; Claudiano, G. S.; Salvador, R. 2016. Passive transfer of hyperimmune serum anti Streptococcus agalactiae and its prophylactic effect on Nile tilapia experimentally infected. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 68(2): 379-386. http://dx.doi.org/10.1590/1678-4162-8170.
Farias, W. R. L.; Rebouças, H. J.; Torres, V. M.; Rodrigues, J. A. G.; Pontes, G. C.; SILVA, F. H. O.; Sampaio, A. H. 2004. Enhancement of growth in tilapia fingerlings (Oreochromis niloticus) by sulfated D-galactans extracted from marine algae. Revista Ciência Agronômica, 35, 189-195.
Fink, A.L. 1999. Chaperone - mediated protein folding. Physiological Reviews, 79(2): 425 -449. https://doi.org/10.1152/physrev.1999.79.2.425.
FAO - FOOD AND AGRICULTURE ORGANIZATION. 2014. The State of World Fisheries and Aquaculture. Food and Agriculture Organization of the United Nations, Rome 243pp.
Ghazalah, A. A.; Ali, H. M.; Gehad, E. A.; Hammouda, Y. A.; Abo-State, H. A. 2010. Effect of probiotics on performance and nutrients digestibility of Nile tilapia (Oreochromis niloticus) fed low protein diets. Nature and Science, 8(5): 46-53.
Gutierre, S. M. M. 2011. Ferramentas fisiológicas para avaliação do potencial invasor de peixes dulcícolas. Curitiba, Brasil. Curitiba (Dissertação Mestrado. Universidade Federal doParaná,aUFPR).uDisponíveldem:<http://eprints.c3sl.ufpr.br/bitstream/handle/1884/25490/Dissertacao%20%20Silvia%20Maria%20Millan%20Gutierre.pdf?sequence=1&isAllowed=y> Acesso em: 31 mai. 2017.
He, S.; Zhang, Y.; Xu, L.; Yang, Y.; Marubashi, T.; Zhou, Z.; Yao, B. 2013. Effects of dietary Bacillus subtilis C-3102 on the production, intestinal cytokine expression and autochthonous bacteria of hybrid tilapia Oreochromis niloticus ♀í"”Oreochromis aureusââ„¢"š. Aquaculture, 412: 125-130. https://doi.org/10.1016/j.aquaculture.2013.06.028.
Hofmann, G.E. 2005. Patterns of HSP gene expression in ectothermic marine organisms on small to large biogeographic scales. Integrative and Comparative Biology, 45(2): 247-255. https://doi.org/10.1093/icb/45.2.247.
Irianto, A.; Austin, B. 2002. Probiotics in aquaculture. Journal of fish diseases, 25(11): 633-642. https://doi.org/10.1046/j.1365-2761.2002.00422.x.
Jatobá, A.; Mourií±o, J.L.P. 2015. Efeito do Lactobacillus plantarum no trato intestinal de alevinos de Oreochromis niloticus. Ciência Animal Brasileira, 16(1): 45-53.
Kesarcodi-Watson, A.; Kaspar, H.; Lategan, M.J.; Gibson, L. 2008. Probiotics in aquaculture: The need, principles and mechanisms of action and screening processes. Aquaculture, 274(1): 1-14. https://doi.org/10.1016/j.aquaculture.2007.11.019.
Livak, K.; Schmittgent. 2001. Analysis of relative gene expression data using real time quantitative PCR and 2 -âˆ" âˆ" Ct method. methods, 25(4): 402í 408. https://doi.org/10.1006/meth.2001.1262.
Low, C.; Wadsworth, S.; Burrells, C.; Secombes, C.J. 2003. Expression of immune genes in turbot (Scophthalmus maximus) fed a nucleotide-supplemented diet. Aquaculture, 221(1): 23í 40. https://doi.org/10.1016/S0044-8486(03)00022-X.
Makridis, P.; Fjellheim, A.J.; Skjermo, J. 2000. Colonization of the gut in first feeding turbot by bacterial strains added to the water or encapsulated in rotifers. Aquaculture International, 8(5): 367-380.
Merrifield, D.L.; Dimitroglou, A.; Foey, A.; Davies, S.J.; Baker, R.; Bí¸gwald, J.; Castex, M.; Ringí¸, E. 2010. The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture, 302(1): 1í 18. https://doi.org/10.1016/j.aquaculture.2010.02.007.
Meurer, F.; Hayashi, C.; Costa, M.M.; Mauerwerk, V.L.; Freccia, A. 2006. Utilização de Saccharomyces cerevisiae como probiótico para tilápia-do-Nilo durante o período de reversão sexual submetidas a um desafio sanitário. Revista Brasileira de Zootecnia, 35(5): 1881-1886.
Ohkawara, Y.; Yamauchi, K.; Tanno, Y.; Tamura, G.; Ohtani, H.; Nagura, H.; Takishima, T. 1992. Human Lung Mast Cells and Pulmonary Macrophages Produce Tumor Necrosis Factor-a in Sensitized Lung Tissue after 19B Receptor Triggering. American Journal of Respiratory Cell and Molecular Biology, 7: 385-392. https://doi.org/10.1165/ajrcmb/7.4.385.
Peixe BR, 2018. Associação Brasileira de Piscicultura. Anuário PeixeBr de Piscicultura 2018, 71p. Disponível em: <http://www.peixebr.com.br> Acesso em 13/06/2018.
Place, S.P.; Hofmann, G.E. 2001. Temperature interactions of the molecular chaperone Hsc70 from the eurythermal marine goby Gillichthys mirabilis. Journal of Experimental Biology, 204(15): 2675-2682.
Ren, P.; Xu, L.; Yang, Y.; He, S.; Liu, W.; Ringí¸, E.; Zhou, Z. 2013. Lactobacillus plantarum subsp. plantarum JCM 1149 vs Bacillus subtilis NJ-1 in the anterior intestine and posterior intestine of hybrid tilapia Oreochromis niloticus♀í"”Oreochromis aureusââ„¢"š. Fish and Shellfish Immunology, 6(34): 1732-1733. https://doi.org/10.1016/j.fsi.2013.03.295.
Selim, K. M.; Reda, R. M. 2015. Improvement of immunity and disease resistance in the Nile tilapia, Oreochromis niloticus, by dietary supplementation with Bacillus amyloliquefaciens. Fish & shellfish immunology, 44(2): 496-503. https://doi.org/10.1016/j.fsi.2015.03.004.
Seppola, M.; Larsenan; Steiro, K.; Robertsen, B.; Jensen, I. 2008. Characterisation and expression analysis of the interleukin genes, IL-1b, IL-8 and IL-10, in Atlantic cod (Gadus morhua L.). Molecular Immunology, 45(4): 887-897. https://doi.org/10.1016/j.molimm.2007.08.003.
Tachibana, L.; Dias, D. C.; Ishikawa, C. M.; Corrêa, C. F.; Leonardo, A. F. G.; Ranzani-Paiva, M. J. T. 2012. Probiótico na alimentação da tilápia-do-Nilo (Oreochromis niloticus Linnaeus, 1758), durante a inversão sexual: desempenho zootécnico e recuperação da bactéria probiótica intestinal. Bioikos-ISSN 0102-9568, 25(1).
Telli, G. S.; Paiva, M. J. T. M.; Dias, D. D. C.; Sussel, F. R.; Ishikawa, C. M.; Tachibana, L. 2014. Dietary administration of Bacillus subtilis on hematology and non-specific immunity of Nile tilapia Oreochromis niloticus raised at different stocking densities. Fish & shellfish immunology, 39(2): 305-311. https://doi.org/10.1016/j.fsi.2014.05.025.
Thomas, PS. 2001. Tumour necrosis factor-alpha: the role of this multifunctional cytokine in asth ma. Immunology and cell biology, 79(2): 132-140. https://doi.org/10.1046/j.1440-1711.2001.00980.x.
Tine, M.; Bonhomme, F.; Mckenzie, D.J.; Durand, J.D. 2010. Differential expression of the heat shock protein Hsp70 in natural populations of the tilapia, Sarotherodon melanotheron, acclimatised to a range of environmental salinities. BMC ecology, 10(1): 11. https://doi.org/10.1186/1472-6785-10-11.
Tomanek, L. 2008. The importance of physiological limits in determining biogeographical range shifts due to global climate change: the heat shock response. Physiological and Biochemical Zoology, 81(6): 709 í 717. https://doi.org/10.1086/590163.
Tort, L.; Balasch, J.C.; Mackenzie, S. 2003. Fish immune system. A crossroads between innate and adaptive responses. Imunología, 22(3): 277-286.
Zhou, X.; Tian, Z.; Wang, Y.; Li, W. 2010. Effect of treatment with probiotics as water additives on tilapia (Oreochromis niloticus) growth performance and immune response. Fish Physiology and Biochemistry, 36(3): 501-509.