ANTIBACTERIAL EFFECTS OF SEVEN ESSENTIAL PLANT OILS ON FISH PATHOGENS

Authors

DOI:

https://doi.org/10.20950/1678-2305.2020.46.3.565

Keywords:

fish pathogens;, essential oil;, antibacterial activity;, minimum inhibitory concentration.

Abstract

The use of natural products which have the least harmful effects on the environment has recently been taken as a novel approach against fish diseases. References on in vitro studies have demonstrated antibacterial activity of essential oils (EOs) against certain fish pathogens. The aim of this study was to evaluate the antibacterial effect of some plant essential oils against fish pathogenic bacteria in vitro conditions. Seven plant EOs: lavender (Lavandula angustifolia), clove (Eugenia caryophyllus), peppermint (Mentha piperitae), basil (Ocimum sanctum), rosemary (Rosmarinus officinalis), cinnamon (Cinnamomum zeylanicum) and black cumin (Nigella sativa) were used to identify their antibacterial properties against Yersinia ruckeri, Aeromonas hydrophila, Vibrio anguillarum, Vibrio alginolyticus, Lactococcus garvieae and Vagococcus salmoninarum at five concentrations using disc diffusion method. Especially the EOs of clove, cinnamon and rosemary showed the strongest antibacterial activities than other oils against the three most susceptible bacterial strains (Y. ruckeri, A. hydrophila and V. salmoninarum). Besides, the EOs of clove, rosemary, cinnamon and black cumin showed similar inhibition zones with OTC against A. hydrophila. The minimum inhibitory concentrations of the used EOs found between 500 and 62.5 µl mL-1. As a result, three of the EOs used in this study were effective on both Gr (-) and Gr (+) bacteria.  

References

Acar, J.; Davies, J.; Buckley, M. 2009. Antibiotic resistance: an ecological perspective on an old problem. Washington: US American Academy of Microbiology, Government Printing Office. p. 11-19.

Adel, M.; Safari, R.; Ghitanchi, A.H.; Zorriehzahra, M.J. 2016. Chemical composition and in vitro antimicrobial activity of some Iranian medical herbs against Yersinia ruckeri. Iranian Journal of Fisheries Science, 15(3): 1108-1123.

Altun, S.; Diler, O.; AdiloÄŸlu, A.K. 2004. Genotyping of Lactococcus garvieae strains from rainbow trout (Oncorhynchus mykiss) by 16s rDNA sequencing. Bulletin of the European Association of Fish Pathologists, 24(2): 119.

Andrews, J.M. 2004. BSAC standardized disc susceptibility testing method (version 3). The Journal of Antimicrobial Chemotherapy, 53(5): 713-728. http://dx.doi.org/10.1093/jac/dkh113.

Aureli, P.; Costantini, A.; Zolea, S. 1992. Antibacterial activity of some plant essential oils against Listeria monocytogences. Journal of Food Protection, 55(5): 344-348. http://dx.doi.org/10.4315/0362-028X-55.5.344.

Austin, B.; Austin, D.A. 2007. Bacterial fish pathogens diseases of farmed and wild fish. UK: Springer-Verlag, Praxis Publishing. p. 151-183.

Avsever, M.L.; Tunalıgil, S.; Didinen, B.I.; Metin, S. 2015. New rRNA primers for the detection of Vibrio anguillarum. The Israeli Journal of Aquaculture, 67.2015.1227: 1-6.

Bansemir, A.; Blume, M.; Schrí­¶der, S.; Lindequist, U. 2006. Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture, 252(1): 79-84. http://dx.doi.org/10.1016/j.aquaculture.2005.11.051.

Benzaria, A.; Meskini, N.; Dubois, N.; Croset, M.; Nemoz, G.; Lagarde, M.; Prigent, A.F. 2006. Effect of dietary argan oil on fatty acid composition, proliferation and phospholipase D activity of rat thymocytes. Nutrition, 22:628-637. https://doi.org/10.1016/j.nut.2006.03.001.

Cavanagh, H.M.; Wilkinson, J.M. 2002. Biological activities of lavender essential oil. Phytotherapy Research, 16(4): 301-308. http://dx.doi.org/10.1002/ptr.1103.

CLSI í  Clinical and Laboratory Standards Institute. 2015. Performance standards for antimicrobial disk susceptibility tests for bacteria isolated from animals. 3th ed. Wayne, PA: CLSI. p. 13-24. (CLSI supplement VET01S).

Cunha, J.A.; Heinzmann, B.M.; Baldisserotto, B. 2018. The effects of essential oils and their major compounds on fish bacterial pathogens: a review. Journal of Applied Microbiology, 125(2): 328-344. http://dx.doi.org/10.1111/jam.13911.

Didinen, B.I.; Kubilay, A.; Diler, O.; Ekici, S.; Onuk, E.E.; Findik, A. 2011. First isolation of Vagococcus salmoninarum from cultured rainbow trout (Oncorhynchus mykiss, Walbaum) broodstocks in Turkey. European Association of Fish Pathologists, 31(6): 235-243.

Ekici, S.; Diler, í­–.; Didinen, B.I.; Kubilay, A. 2011. Antibacterial activity of essential oils from medicinal plants against bacterial fish pathogens. Journal of the Faculty of Veterinary Medicine, 17(suppl. A): 47-54.

Flores-Kossack, C.; Montero, R.; Kí­¶llner, B.; Maisey, K. 2020. Chilean aquaculture and the new challenges: Pathogens, immune response, vaccination and fish diversification. Fish & Shellfish Immunology, 98: 52-67. http://dx.doi.org/10.1016/j.fsi.2019.12.093.

Gholipourkanani, H.; Buller, N.; Lymbery, A. 2019. In vitro antibacterial activity of four nano‐encapsulated herbal essential oils against three bacterial fish pathogens. Aquaculture Research, 50(3): 871-875. http://dx.doi.org/10.1111/are.13959.

Hatha, M.; Vivekanandhan, A.A.; Joice, G.J.; Christol. 2005. Antibiotic resistance pattern of motile aeromonads from farm raised fresh water fish. International Journal of Food Microbiology, 98(2): 131-134. http://dx.doi.org/10.1016/j.ijfoodmicro.2004.05.017.

Hossain, S.; Silva, B.C.J.; Wimalasena, S.H.M.P.; Pathirana, H.N.K.S.; Heo, G.J. 2018. In vitro antibacterial effect of ginger (Zingiber officinale) essential oil against fish pathogenic bacteria isolated from farmed olive flounder (Paralichthys olivaceus) in Korea. Iranian Journal of Fisheries Science, 18(2): 386-394.

Hwang, J.Y.; Kwon, M.G.; Seo, J.S.; Hwang, S.D.; Jeong, J.M.; Lee, J.H.; Jeong, A.B.; Jee, B.Y. 2020. Current use and management of commercial fish vaccines in Korea. Fish & Shellfish Immunology, 102: 20-27. http://dx.doi.org/10.1016/j.fsi.2020.04.004.

Kumar, A.; Samarth, R.M.; Yasmeen, S.; Sharma, A.; Sugahara, T.; Terado, T.; Kimura, H. 2004. Anticancer and radioprotective potentials of Mentha piperita. BioFactors, 22(1-4): 87-91. http://dx.doi.org/10.1002/biof.5520220117.

Majolo, C.; Pilarski, F.; Chaves, F.C.M.; Chagas, E.C. 2018. Antimicrobial activity of some essential oils against Streptococcus agalactiae, an. important pathogen for fish farming in Brazil. The Journal of Essential Oil Research, 30(5): 388-397. http://dx.doi.org/10.1080/10412905.2018.1487343.

Matan, N.; Rimkeeree, H.; Mawson, A.J.; Chompreeda, P.; Haruthaithanasan, V.; Parker, M. 2006. Antimicrobial activity of cinnamon and clove oils under modified atmosphere conditions. International Journal of Food Microbiology, 107(2): 180-185. http://dx.doi.org/10.1016/j.ijfoodmicro.2005.07.007.

Metin, S.; Bicer, Z.H. 2020. Antibacterial activity of some essential oils againts Vagococcus salmoninarum. Ege Journal of Fisheries and Aquatic Sciences, 37(2): 167-173. http://dx.doi.org/10.12714/egejfas.37.2.07.

Metin, S.; Didinen, B.I.; Mercimek, E.B.; Ersoy, A.T. 2017. Antibacterial activity of some medicinal plants essential oils against fish pathogens. Aquaculture Studies, 17(1): 59-69.

Nazzaro, F.; Fratianni, F.; Martino, L.; Coppola, R.; Feo, V. 2013. Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6(12): 1451-1474. http://dx.doi.org/10.3390/ph6121451.

Ontas, C.; Baba, E.; Kaplaner, E.; Küçükaydın, S.; Oztürk, M.; Ercan, M.D. 2016. Antibacterial Activity of Citrus limon peel essential oil and Argania spinosa oil against fish pathogenic bacteria. Kafkas í­Å“niversity Veteriner Faculty, 22(5): 741-749. http://dx.doi.org/10.9775/kvfd.2016.15311.

Ouattara, B.; Simard, R.E.; Holley, R.A.; Piette, G.J.-P.; Bégin, A. 1997. Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. International Journal of Food Microbiology, 37(2-3): 155-162. http://dx.doi.org/10.1016/S0168-1605(97)00070-6.

Ozogul, Y.; Kuley, E.; Uçar, Y.; Ozogul, F. 2015. Antimicrobial impacts of essential oils on food bornepathogens. Recent Patents on Food, Nutrition & Agriculture, 7(1): 53-61. http://dx.doi.org/10.2174/2212798407666150615112153.

Park, J.W.; Wendt, M.; Heo, G.J. 2016. Antimicrobial activity of essential oil of Eucalyptus globulus against fish pathogenic bacteria. Laboratory Animal Research, 32(2): 87-90. http://dx.doi.org/10.5625/lar.2016.32.2.87.

Pathirana, H.N.K.S.; Wimalasena, S.H.M.P.; De Silva, B.C.J.; Hossain, S.; Heo, G.J. 2018. Antibacterial activity of lime (Citrus aurantifolia) essential oil and limonene against fish pathogenic bacteria isolated from cultured olive flounder (Paralichthys olivaceus). Fisheries and Aquatic Life, 26(2): 131-139. http://dx.doi.org/10.2478/aopf-2018-0014.

Romero, J.; Gloria, C.; Navarrete, P. 2012. Antibiotics in aquaculture í  use, abuse and alternatives, health and environment in aquaculture. In: Carvalho, E.D.; David, G.S.; Silva, R.J. Health and environment in aquaculture. Croatia: InTech Europe. p. 159-184. http://dx.doi.org/10.5772/28157.

Serrano, P.H. 2005. Responsible use of antibiotics in aquaculture. Rome: Food and Agriculture Organization. 97p. (Fisheries Technical Paper, 469).

Singh, S.; Majumdar, D.K. 1999. Effect of Ocimum sanctum fixed oil on vascular permeability and leucocytes migration. Indian Journal of Experimental Biology, 37(11): 1136-1138.

Soltani, M.; Ghodratnama, M.; Ebrahimzadeh-Mosavi, H.A.; Nikbakht-Brujeni, G.; Mohamadian, S.; Ghasemian, M. 2014. Shirazi thyme (Zataria multiflora Boiss) and Rosemary (Rosmarinus officinalis) essential oils repress expression of sagA, a streptolysin S-related gene in Streptococcus iniae. Aquaculture, 430(20): 248-252. http://dx.doi.org/10.1016/j.aquaculture.2014.04.012.

Stefanakis, M.K.; Touloupakis, E.; Anastasopoulos, E.; Ghanotakis, D.; Katerinopoulos, H.E.; Makridis, P. 2013. Antibacterial activity of essential oils from plants of the genus Origanum. Food Control, 34(2): 539-546. http://dx.doi.org/10.1016/j.foodcont.2013.05.024.

Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. 2016. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evidence-Based Complementary and Alternative Medicine, 2016: 3012462. http://dx.doi.org/10.1155/2016/3012462.

Wang, O.; Ji, W.; Xu, Z. 2020. Current use and development of fish vaccines in China. Fish & Shellfish Immunology, 96: 223-234. http://dx.doi.org/10.1016/j.fsi.2019.12.010.

Wimalasena, S.H.M.P.; Pathirana, H.N.K.S.; De Silva, B.C.J.; Hossain, S.; Heo, G.J. 2018. Antimicrobial activity of lavender (Lavendular angustifolia) oil against fish pathogenic bacteria isolated from cultured olive flounder (Paralichthys olivaceus) in Korea. Indian Journal of Fisheries, 65(3): 52-56. http://dx.doi.org/10.21077/ijf.2018.65.3.74436-07.

Yıldırım, A.B.; Türker, H. 2018. Antibacterial activity of some aromatic plant essential oils against fish pathogenic bacteria. Journal of Limnology and Freshwater Fisheries Research, 4(2): 67-74. http://dx.doi.org/10.17216/limnofish.379784.

Zhang, D.; Li, A.; Guo, Y.; Zhang, Q.; Chen, X.; Gong, X. 2013. Molecular characterization of Streptococcus agalactiae in diseased farmed tilapia in China. Aquaculture, 412-413: 64-69. http://dx.doi.org/10.1016/j.aquaculture.2013.07.014.

Zheng, C.J.; Yoo, J.S.; Lee, T.G.; Cho, H.Y.; Kim, Y.H.; Kim, W.G. 2005. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Letters, 579(23): 5157-5162. http://dx.doi.org/10.1016/j.febslet.2005.08.028.

Downloads

Published

2020-12-14