EFEITOS ANTIBACTERIANOS DE SETE ÓLEOS DE PLANTAS ESSENCIAIS EM PATÓGENOS DE PEIXE
DOI:
https://doi.org/10.20950/1678-2305.2020.46.3.565Palavras-chave:
fish pathogens;, essential oil;, antibacterial activity;, minimum inhibitory concentration.Resumo
A utilização de produtos naturais com menos efeitos nocivos para o ambiente foi recentemente considerada uma nova abordagem contra as doenças dos peixes. Referências em estudos in vitro demonstraram atividade antibacteriana de óleos essenciais (OE) contra certos patógenos de peixes. O objetivo deste estudo foi avaliar o efeito antibacteriano de alguns óleos essenciais de plantas contra bactérias patogênicas de peixes em condições in vitro. Sete EOs de plantas: alfazema (Lavandula angustifolia), cravo (Eugenia caryophyllus), hortelã-pimenta (Mentha piperitae), manjericão (Ocimum sanctum), alecrim (Rosmarinus officinalis), canela (Cinnamomum zeylanicum) e cominho preto (Nigella sativa) foram usados para identificar suas propriedades antibacterianas contra Yersinia ruckeri, Aeromonas hydrophila, Vibrio anguillarum, Vibrio alginolyticus, Lactococcus garvieae e Vagococcus salmoninarum em cinco concentrações usando o método de difusão em disco. Especialmente os OEs de cravo, canela e alecrim mostraram as atividades antibacterianas mais fortes do que outros óleos contra as três cepas bacterianas mais suscetíveis (Y. ruckeri, A. hydrophila e V. salmoninarum). Além disso, os OEs de cravo, alecrim, canela e cominho preto mostraram zonas de inibição semelhantes com OTC contra A. hydrophila. As concentrações inibitórias mínimas dos OE usados encontradas entre 500 e 62.5 µl mL-1. Como resultado, três dos EOs usados neste estudo foram eficazes nas bactérias Gr (-) e Gr (+).
Referências
Adel, M.; Safari, R.; Ghitanchi, A.H.; Zorriehzahra, M.J. 2016. Chemical composition and in vitro antimicrobial activity of some Iranian medical herbs against Yersinia ruckeri. Iranian Journal of Fisheries Science, 15(3): 1108-1123.
Altun, S.; Diler, O.; AdiloÄŸlu, A.K. 2004. Genotyping of Lactococcus garvieae strains from rainbow trout (Oncorhynchus mykiss) by 16s rDNA sequencing. Bulletin of the European Association of Fish Pathologists, 24(2): 119.
Andrews, J.M. 2004. BSAC standardized disc susceptibility testing method (version 3). The Journal of Antimicrobial Chemotherapy, 53(5): 713-728. http://dx.doi.org/10.1093/jac/dkh113.
Aureli, P.; Costantini, A.; Zolea, S. 1992. Antibacterial activity of some plant essential oils against Listeria monocytogences. Journal of Food Protection, 55(5): 344-348. http://dx.doi.org/10.4315/0362-028X-55.5.344.
Austin, B.; Austin, D.A. 2007. Bacterial fish pathogens diseases of farmed and wild fish. UK: Springer-Verlag, Praxis Publishing. p. 151-183.
Avsever, M.L.; Tunalıgil, S.; Didinen, B.I.; Metin, S. 2015. New rRNA primers for the detection of Vibrio anguillarum. The Israeli Journal of Aquaculture, 67.2015.1227: 1-6.
Bansemir, A.; Blume, M.; Schrí¶der, S.; Lindequist, U. 2006. Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture, 252(1): 79-84. http://dx.doi.org/10.1016/j.aquaculture.2005.11.051.
Benzaria, A.; Meskini, N.; Dubois, N.; Croset, M.; Nemoz, G.; Lagarde, M.; Prigent, A.F. 2006. Effect of dietary argan oil on fatty acid composition, proliferation and phospholipase D activity of rat thymocytes. Nutrition, 22:628-637. https://doi.org/10.1016/j.nut.2006.03.001.
Cavanagh, H.M.; Wilkinson, J.M. 2002. Biological activities of lavender essential oil. Phytotherapy Research, 16(4): 301-308. http://dx.doi.org/10.1002/ptr.1103.
CLSI í Clinical and Laboratory Standards Institute. 2015. Performance standards for antimicrobial disk susceptibility tests for bacteria isolated from animals. 3th ed. Wayne, PA: CLSI. p. 13-24. (CLSI supplement VET01S).
Cunha, J.A.; Heinzmann, B.M.; Baldisserotto, B. 2018. The effects of essential oils and their major compounds on fish bacterial pathogens: a review. Journal of Applied Microbiology, 125(2): 328-344. http://dx.doi.org/10.1111/jam.13911.
Didinen, B.I.; Kubilay, A.; Diler, O.; Ekici, S.; Onuk, E.E.; Findik, A. 2011. First isolation of Vagococcus salmoninarum from cultured rainbow trout (Oncorhynchus mykiss, Walbaum) broodstocks in Turkey. European Association of Fish Pathologists, 31(6): 235-243.
Ekici, S.; Diler, í–.; Didinen, B.I.; Kubilay, A. 2011. Antibacterial activity of essential oils from medicinal plants against bacterial fish pathogens. Journal of the Faculty of Veterinary Medicine, 17(suppl. A): 47-54.
Flores-Kossack, C.; Montero, R.; Kí¶llner, B.; Maisey, K. 2020. Chilean aquaculture and the new challenges: Pathogens, immune response, vaccination and fish diversification. Fish & Shellfish Immunology, 98: 52-67. http://dx.doi.org/10.1016/j.fsi.2019.12.093.
Gholipourkanani, H.; Buller, N.; Lymbery, A. 2019. In vitro antibacterial activity of four nanoâ€Âencapsulated herbal essential oils against three bacterial fish pathogens. Aquaculture Research, 50(3): 871-875. http://dx.doi.org/10.1111/are.13959.
Hatha, M.; Vivekanandhan, A.A.; Joice, G.J.; Christol. 2005. Antibiotic resistance pattern of motile aeromonads from farm raised fresh water fish. International Journal of Food Microbiology, 98(2): 131-134. http://dx.doi.org/10.1016/j.ijfoodmicro.2004.05.017.
Hossain, S.; Silva, B.C.J.; Wimalasena, S.H.M.P.; Pathirana, H.N.K.S.; Heo, G.J. 2018. In vitro antibacterial effect of ginger (Zingiber officinale) essential oil against fish pathogenic bacteria isolated from farmed olive flounder (Paralichthys olivaceus) in Korea. Iranian Journal of Fisheries Science, 18(2): 386-394.
Hwang, J.Y.; Kwon, M.G.; Seo, J.S.; Hwang, S.D.; Jeong, J.M.; Lee, J.H.; Jeong, A.B.; Jee, B.Y. 2020. Current use and management of commercial fish vaccines in Korea. Fish & Shellfish Immunology, 102: 20-27. http://dx.doi.org/10.1016/j.fsi.2020.04.004.
Kumar, A.; Samarth, R.M.; Yasmeen, S.; Sharma, A.; Sugahara, T.; Terado, T.; Kimura, H. 2004. Anticancer and radioprotective potentials of Mentha piperita. BioFactors, 22(1-4): 87-91. http://dx.doi.org/10.1002/biof.5520220117.
Majolo, C.; Pilarski, F.; Chaves, F.C.M.; Chagas, E.C. 2018. Antimicrobial activity of some essential oils against Streptococcus agalactiae, an. important pathogen for fish farming in Brazil. The Journal of Essential Oil Research, 30(5): 388-397. http://dx.doi.org/10.1080/10412905.2018.1487343.
Matan, N.; Rimkeeree, H.; Mawson, A.J.; Chompreeda, P.; Haruthaithanasan, V.; Parker, M. 2006. Antimicrobial activity of cinnamon and clove oils under modified atmosphere conditions. International Journal of Food Microbiology, 107(2): 180-185. http://dx.doi.org/10.1016/j.ijfoodmicro.2005.07.007.
Metin, S.; Bicer, Z.H. 2020. Antibacterial activity of some essential oils againts Vagococcus salmoninarum. Ege Journal of Fisheries and Aquatic Sciences, 37(2): 167-173. http://dx.doi.org/10.12714/egejfas.37.2.07.
Metin, S.; Didinen, B.I.; Mercimek, E.B.; Ersoy, A.T. 2017. Antibacterial activity of some medicinal plants essential oils against fish pathogens. Aquaculture Studies, 17(1): 59-69.
Nazzaro, F.; Fratianni, F.; Martino, L.; Coppola, R.; Feo, V. 2013. Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6(12): 1451-1474. http://dx.doi.org/10.3390/ph6121451.
Ontas, C.; Baba, E.; Kaplaner, E.; Küçükaydın, S.; Oztürk, M.; Ercan, M.D. 2016. Antibacterial Activity of Citrus limon peel essential oil and Argania spinosa oil against fish pathogenic bacteria. Kafkas íÅ“niversity Veteriner Faculty, 22(5): 741-749. http://dx.doi.org/10.9775/kvfd.2016.15311.
Ouattara, B.; Simard, R.E.; Holley, R.A.; Piette, G.J.-P.; Bégin, A. 1997. Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. International Journal of Food Microbiology, 37(2-3): 155-162. http://dx.doi.org/10.1016/S0168-1605(97)00070-6.
Ozogul, Y.; Kuley, E.; Uçar, Y.; Ozogul, F. 2015. Antimicrobial impacts of essential oils on food bornepathogens. Recent Patents on Food, Nutrition & Agriculture, 7(1): 53-61. http://dx.doi.org/10.2174/2212798407666150615112153.
Park, J.W.; Wendt, M.; Heo, G.J. 2016. Antimicrobial activity of essential oil of Eucalyptus globulus against fish pathogenic bacteria. Laboratory Animal Research, 32(2): 87-90. http://dx.doi.org/10.5625/lar.2016.32.2.87.
Pathirana, H.N.K.S.; Wimalasena, S.H.M.P.; De Silva, B.C.J.; Hossain, S.; Heo, G.J. 2018. Antibacterial activity of lime (Citrus aurantifolia) essential oil and limonene against fish pathogenic bacteria isolated from cultured olive flounder (Paralichthys olivaceus). Fisheries and Aquatic Life, 26(2): 131-139. http://dx.doi.org/10.2478/aopf-2018-0014.
Romero, J.; Gloria, C.; Navarrete, P. 2012. Antibiotics in aquaculture í use, abuse and alternatives, health and environment in aquaculture. In: Carvalho, E.D.; David, G.S.; Silva, R.J. Health and environment in aquaculture. Croatia: InTech Europe. p. 159-184. http://dx.doi.org/10.5772/28157.
Serrano, P.H. 2005. Responsible use of antibiotics in aquaculture. Rome: Food and Agriculture Organization. 97p. (Fisheries Technical Paper, 469).
Singh, S.; Majumdar, D.K. 1999. Effect of Ocimum sanctum fixed oil on vascular permeability and leucocytes migration. Indian Journal of Experimental Biology, 37(11): 1136-1138.
Soltani, M.; Ghodratnama, M.; Ebrahimzadeh-Mosavi, H.A.; Nikbakht-Brujeni, G.; Mohamadian, S.; Ghasemian, M. 2014. Shirazi thyme (Zataria multiflora Boiss) and Rosemary (Rosmarinus officinalis) essential oils repress expression of sagA, a streptolysin S-related gene in Streptococcus iniae. Aquaculture, 430(20): 248-252. http://dx.doi.org/10.1016/j.aquaculture.2014.04.012.
Stefanakis, M.K.; Touloupakis, E.; Anastasopoulos, E.; Ghanotakis, D.; Katerinopoulos, H.E.; Makridis, P. 2013. Antibacterial activity of essential oils from plants of the genus Origanum. Food Control, 34(2): 539-546. http://dx.doi.org/10.1016/j.foodcont.2013.05.024.
Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. 2016. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evidence-Based Complementary and Alternative Medicine, 2016: 3012462. http://dx.doi.org/10.1155/2016/3012462.
Wang, O.; Ji, W.; Xu, Z. 2020. Current use and development of fish vaccines in China. Fish & Shellfish Immunology, 96: 223-234. http://dx.doi.org/10.1016/j.fsi.2019.12.010.
Wimalasena, S.H.M.P.; Pathirana, H.N.K.S.; De Silva, B.C.J.; Hossain, S.; Heo, G.J. 2018. Antimicrobial activity of lavender (Lavendular angustifolia) oil against fish pathogenic bacteria isolated from cultured olive flounder (Paralichthys olivaceus) in Korea. Indian Journal of Fisheries, 65(3): 52-56. http://dx.doi.org/10.21077/ijf.2018.65.3.74436-07.
Yıldırım, A.B.; Türker, H. 2018. Antibacterial activity of some aromatic plant essential oils against fish pathogenic bacteria. Journal of Limnology and Freshwater Fisheries Research, 4(2): 67-74. http://dx.doi.org/10.17216/limnofish.379784.
Zhang, D.; Li, A.; Guo, Y.; Zhang, Q.; Chen, X.; Gong, X. 2013. Molecular characterization of Streptococcus agalactiae in diseased farmed tilapia in China. Aquaculture, 412-413: 64-69. http://dx.doi.org/10.1016/j.aquaculture.2013.07.014.
Zheng, C.J.; Yoo, J.S.; Lee, T.G.; Cho, H.Y.; Kim, Y.H.; Kim, W.G. 2005. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Letters, 579(23): 5157-5162. http://dx.doi.org/10.1016/j.febslet.2005.08.028.