DIFFERENT DENSITIES OF COMMON SNOOK REARED IN MARINE CAGES IN SOUTHERN BRAZIL

Authors

  • Fabiano Müller SILVA Centro de Desenvolvimento em Aquicultura e Pesca, Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina, Secretaria de Estado da Agricultura, da Pesca e do Desenvolvimento Rural, Governo do estado de Santa Catarina. http://orcid.org/0000-0003-0862-4398
  • Bruno Corrêa da SILVA Centro de Desenvolvimento em Aquicultura e Pesca, Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina, Secretaria de Estado da Agricultura, da Pesca e do Desenvolvimento Rural, Governo do estado de Santa Catarina. http://orcid.org/0000-0002-1478-3777
  • Vinicius Ronzani CERQUEIRA Universidade Federal de Santa Catarina, Centro de Ciências Agrárias, Departamento de Aquicultura, Laboratório de Piscicultura Marinha. http://orcid.org/0000-0002-7385-677X

DOI:

https://doi.org/10.20950/1678-2305/bip.2021.47.e643

Keywords:

productivity;, marine fish farming;, performance indicators;, growth-out.

Abstract

Two growth stages of juvenile snook (Centropomus undecimalis) under three different densities were evaluated: 10, 20, and 40 fish m-3, in 2.5-m3 cages with 12-mm mesh. In phase I, snooks of 72.0 g and 21.2 cm were raised for 270 days. In phase II, snooks of 204.6 g and 29.2 cm were raised for 202 days. The average water temperature and salinity were 24.3°C and 34.5, respectively, at Santa Catarina Island, Brazil. The data were evaluated using regression models. Density increase did not influence survival rate, with 51.0% (phase I) and 88.7% (phase II). The density of 20 fish m-3 provided the best results, such as body weight, in the two phases, with 215.7 and 364.7 g, respectively. Water temperature was the main limiting factor for the growth of snook. Therefore, in a subtropical climate, it is recommended to start growing in the spring (> 24°C) and avoid handling fish when the temperature is below 20°C. Regression analysis on the final weight showed that densities of 24 fish m-3 could be indicated for common snook under the conditions of this study.

References

Adams, A.J.; Hill, J.E.; Kurth, B.N.; Barbour, A.B. 2012. Effects of a severe cold event on the subtropical, estuarine-dependent common snook, Centropomus undecimalis. Gulf and Caribbean Research, 24(1): 13-21. https://doi.org/10.18785/gcr.2401.03.

Alvarez-Lajonchí­¨re, L.S.; Tsuzuki, M.Y. 2008. A review of methods for Centropomus spp. (snooks) aquaculture and recommendations for the establishment of their culture in Latin America. Aquaculture Research, 39(7): 684-700. https://doi.org/10.1111/j.1365-2109.2008.01921.x.

Ambrosio, P.P.; Costa, C.; Pablo, S.; Flos, R. 2008. Stocking density and its influence on shape of Senegalese sole adults. Aquaculture International, 16(4): 333-343. https://doi.org/10.1007/s10499-007-9147-5.

Arenas, M.: Álvarez-González, C.A.; Barreto, A.; Sánchez-Zamora, A.; Suárez-Bautista, J.; Cuzon, G.; Gaxiola, G. 2021. Physiological and metabolic protein-sparing effects of dietary lipids on common snook Centropomus undecimalis (Bloch, 1792) juveniles. Aquaculture Nutrition, 27(4): 1089-1102. https://doi.org/10.1111/anu.13250.

Beveridge, M. 2004. Cage Aquaculture, 3rd ed. Wiley-Blackwell, 380 p.

Bjí­¶rnsson, B. 1994. Effects of stocking density on growth rate of halibut (Hippoglossus hippoglossus) reared in large circular tanks for three years. Aquaculture, 123(3-4): 259-270. https://doi.org/10.1016/0044-8486(94)90064-7.

Bhujel, R.C. 2008. Statistics for aquaculture. Iowa, USA: Wiley-Blackwell. 1st ed., 240p.

Bjí­¸rndal, T.; Tusvik, A. 2019. Economic analysis of land based farming of salmon. Aquaculture Economics & Management, 23(4): 449-475. https://doi.org/10.1080/13657305.2019.1654558.

Blewett, D.A.; Stevens, P.W. 2014. Temperature variability in a subtropical estuary and implications for Common Snook Centropomus undecimalis, a cold-sensitive fish. Gulf of Mexico Science, 32(1): 44-54. https://doi.org/10.18785/goms.3201.04.

Cerqueira, V.R.; Carvalho, C.V.C.; Sanches, E.G.; Passini, G.; Baloi, M.; Rodrigues, R.V. 2017. Manejo de reprodutores e controle da reprodução de peixes marinhos da costa brasileira. Revista Brasileira de Reprodução Animal, 41(1): 94-102.

Cerqueira, V.R.; Passini, G.; Carvalho, C.V.A.; Sterzelecki, F.; Cipriano, F.S. 2020. Cultivo de robalo-flecha (Centropomus undecimalis) e robalo-peva (Centropomus parallelus). In: Baldisserotto, B. (ed). Espécies nativas para piscicultura no Brasil. 3ª ed. Santa Maria: Editora da UFSM. pp. 449-474.

Costa, C.; Menesatti, P.; Rambaldi, E.; Argenti, L.; Bianchini, M.L. 2013. Preliminary evidence of colour differences in European sea bass reared under organic protocols. Aquacultural Engineering, 57: 82-88. https://doi.org/10.1016/j.aquaeng.2013.08.001.

David, L.H.C.; Pinho, S.M.; Correia, D.; Tsuzuki, M.T.; Emerenciano, M.G.C.; Mello, G.L. 2019. Desempenho zootécnico e rendimento de filé do robalo-flecha alimentado com diferentes dietas comerciais. LABOMAR, Arquivos de Ciências do Mar, 52(1): 69-80.

EUMOFA - European Market Observatory for Fisheries and Aquaculture Products. 2018. Case Study: Seabass in the EU. Price structure in the supply chain for seabass. European Commission, Brussels. 47p. https://doi.org/10.2771/74704.

FAO - Food and Agriculture Organization of the United Nations. 2009. Cultured Aquatic Species Information Programme. Lates calcarifer (Block, 1790). URL: <http://www.fao.org/fishery/culturedspecies/Lates_calcarifer/en>. Accessed: Dec. 05, 2020.

Gilmore, R.G.; Donahoe, C.J.; Cooke, D.W. 1983. Observações sobre a distribuição e biologia do robalo, Centropomus undecimalis (Bloch). Florida Scientist, 46: 313-336.

Gracia-López, V.; Garcí­­a-Galano, T.; Gaxiola-Cortés, G.; Pacheco-Campos, J. 2003. Efecto del nivel de proteí­­na en la dieta y alimentos comerciales sobre el crecimiento y la alimentación en juveniles del robalo blanco, Centropomus undecimalis (Bloch, 1792). Ciencias Marinas, 29(4B): 585-594. http://dx.doi.org/10.7773/cm.v29i42.198.

Howells, R.G.; Sonski, A.J.; Shafland, P.L.; Hilton, B.D. 1990. Lower temperature tolerance of snook, Centropomus undecimalis. Northeast Gulf Science, 11(2): 155-158. https://doi.org/10.18785/negs.1102.08.

Ibarra-Castro, L.; Alvarez-Lajonchí­¨re, L.; Rosas, C.; Palomino-Albarrána, I.G.; Holt, J.; Sanchez-Zamora, A. 2011. GnRHa-induced spawning with natural fertilization and pilot-scale juvenile mass production of common snook, Centropomus undecimalis (Bloch, 1792). Aquaculture, 319(3-4): 479-483. https://doi.org/10.1016/j.aquaculture.2011.07.014.

Liao, I.C.; Leaí­±o, E.M. 2008. The aquaculture of groupers. 1st ed. Asian Fisheries Society, National Taiwan Ocean University, The Fisheries Society of Taiwan, World Aquaculture Society, 241 p.

Liebl, F.; Amaral Jr. H.; Garcia, S.; Souto, L.; Carvalho, C.V.A.; Cerqueira, V.R. 2016. Desempenho de juvenis de robalo-flecha e robalo-peva submetidos a diferentes densidades de estocagem em água doce. Boletim do Instituto de Pesca, 42(1): 145-155. https://doi.org/10.20950/1678-2305.2016v42n1p145.

Lima-Junior, S.E.; Cardone, I.B.; Goitein, R. 2002. Determination of a method for calculation of allometric condition factor of fish. Acta Scientiarum, 24: 397-400.

Llorente, I.; Polanco, J.F.; Diez, E.B.; Odriozola, M.D.; Bjí­¸rndal, T.; Asche, F.; Guillen, J.; Avdelas, L.; Nielsen, R.; Cozzolino, M.; Luna, M.; Sánchez, J.L.F.; Luna, L.; Aguilera, C.; Basurco, B. 2020. Assessment of the economic performance of the seabream and seabass aquaculture industry in the European Union, Marine Policy, 117: 103876. https://doi.org/10.1016/j.marpol.2020.103876.

Moretti, A.; Fernandez-Criado, M.; Cittolin, G.; Guidastri, R. 1999. Manual on hatchery production of seabass and gilthead seabream. v. 1. FAO, Rome: Italy, 194 p.

Muller, R.G.; Taylor, R.G. 2000. Stock assessment update of common snook, Centropomus undecimalis. Florida Marine Research Institute. St. Petersburg, Florida, USA, 48p.

Ostini, S.; Oliveira, I.R.; Serralheiro, P.C.S.; Sanches, E.G. 2007. Criação de robalo-peva Centropomus parallelus submetido a diferentes densidades de estocagem. Revista Brasileira de Saúde e Produção Animal, 8(3): 247-254.

Oliveira, R.L.M.; Santos, L.B.G.; Silva Neto, N.G.; Silva, S.P.A.; Silva, F.S.; Melatti, E.; Cavalli, R.O. 2019. Feeding rate and feeding frequency affect growth performance of common snook (Centropomus undecimalis) juveniles reared in the laboratory. Brazilian Journal of Animal Science, 48: e20170292. https://doi.org/10.1590/rbz4820170292.

Passini, G.; Sterzelecki, F.C.; Carvalho, C.V.A.; Baloi, M. F.; Naide, V.; Cerqueira, V.R. 2018. 17α-Methyltestosterone implants accelerate spermatogenesis in common snook, Centropomus undecimalis, during first sexual maturation, Theriogenology, 106: 134-140, https://doi.org/10.1016/j.theriogenology.2017.10.015.

Passini, G.; Carvalho, C.V.A.; Sterzelecki, F.C.; Baloi, M.F.; Cerqueira, V.R. 2019. Spermatogenesis and steroid hormone profile in puberty of laboratory- T reared common snook (Centropomus undecimalis). Aquaculture, 500: 622í 630. https://doi.org/10.1016/j.aquaculture.2018.10.031.

Pope, K.L.; Blankinship, D.R.; Fisher, M.; Patino R. 2006. Status of the common snook (Centropomus undecimalis) in Texas. Texas Journal of Science, 58: 325-332.

Purtlebaugh, C.H.; Martin, C.W.; Allen, M.S. 2020. Poleward expansion of common snook Centropomus undecimalis in the northeastern Gulf of Mexico and future research needs. PLoS ONE 15(6): e0234083. https://doi.org/10.1371/journal.pone.0234083.

Rivas, L.R. 1986. Systematic review of the Perciform fishes of the genus Centropomus. Copeia, 1986(3): 578-611. https://doi.org/10.2307/1444940.

Rowland, S.J.; Mifsud, C.; Nixon, M.; Boyd, P. 2006. Effects of stocking density on the performance of the Australian freshwater silver perch (Bidyanus bidyanus) in cages. Aquaculture, 253(1-4): 301-308. https://doi.org/10.1016/j.aquaculture.2005.04.049.

Shafland, P.L.; Foote, K.J. 1983. A lower lethal temperature for fingerling snook (Centropomus undecimalis). Northeast Gulf Science, 6(2): 175-177. https://doi.org/10.18785/negs.0602.12.

Silvão, C.F.; Nunes, A.J.P. 2017. Effect of dietary amino acid composition from proteins alternative to fishmeal on the growth of juveniles of the common snook, Centropomus undecimalis. Revista Brasileira de Zootecnia, 46(7): 569-575. https://doi.org/10.1590/S1806-92902017000700003.

Souza-Filho, J.J.; Cerqueira, V.R., 2003. Influência da densidade de estocagem no cultivo de juvenis de robalo-flecha mantidos em laboratório. Pesquisa Agropecuária Brasileira, 38(11): 1317-1322. https://doi.org/10.1590/S0100-204X2003001100010.

Tavares, L.E.R.; Luque, J.L. 2003. A new species of Acantholochus (Copepoda: Bomolochidae) parasitic on Centropomus undecimalis (Osteichthyes: Centropomidae) from the coastal zone of the State of Rio de Janeiro, Brazil. Memórias do Instituto Oswaldo Cruz, 98(2): 241-245. https://doi.org/10.1590/S0074-02762003000200013.

Taylor, G.R.; Wittington, J.A.; Grier, H.J.; Crabtree, R.E. 2000. Age, growth, maturation, and protandric sex reversal in common snook, Centropomus undecimalis, from the east and west coasts of south Florida. Fishery Bulletin, National Marine Fisheries Service, 98(3): 612-624.

Taylor, R.G.; Grier, H.J.; Whittington, J.A. 1998. Spawning rhythms of common snook in Florida. Journal of Fish Biology, 53(3): 502-520. https://doi.org/10.1111/j.1095-8649.1998.tb00998.x.

Tiensongrusmee, B.; Budileksono, S.; Cjhanstarasri, S.; Yuwono, S.K.Y.; Santoso, H. 1989. Propagation of seabass, Lates calcarifer in captivity. FAO Seafarming Development Project, INS/81/008/MANUAL/15, Lampung, Indonesia, 55p. URL: <http://www.fao.org/3/AB889E/AB889E00.htm>.

Trapani, A.M.D.; Sgroi, F.; Testa, R.; Tudisca, S. 2014. Economic comparison between offshore and inshore aquaculture production systems of European sea bass in Italy, Aquaculture, 434: 334-339. https://doi.org/10.1016/j.aquaculture.2014.09.001.

Tsuzuki, M.Y.; Berestinas, A.C. 2008. Desempenho de juvenis de robalo-peva Centropomus parallelus com diferentes dietas comerciais e frequências alimentares. Boletim do Instituto de Pesca, 34(4): 535-541.

Tucker, J.W. 1987. Snook and tarpon snook culture and preliminary evaluation for commercial farming. The Progressive Fish-Culturist, 49(1): 49-57. https://doi.org/10.1577/1548-8640(1987)49<49:SATSCA>2.0.CO;2.

Tucker, J.W. 1998 Culture of Established and Potential Speciesâ€"Food Fish. In: Marine Fish Culture. Springer, Boston, MA. Chapter 13, pp. 533-574. https://doi.org/10.1007/978-1-4615-4911-6_13.

Wedemeyer, G.A. 1997. Effects of rearing conditions on the health and physiological quality of fish in intensive culture. In: Iwama, G.; Pickering, A.; Sumpter, J.; Schreck, C. (eds.). Fish Stress and Health in Aquaculture. Cambridge University Press, Cambridge, pp. 35-72.

Winner, B.L.; Blewett, D.A.; McMichael, R.H.; Guenther, C.B. 2010. Relative abundance and distribution of common snook along shoreline habitats of Florida Estuaries. Transactions of the American Fisheries Society, 139(1): 62-79. https://doi.org/10.1577/T08-215.1.

Downloads

Published

2021-11-26

Issue

Section

Scientific Article

Most read articles by the same author(s)

<< < 1 2 3