Integrated multitrophic aquaculture in ponds using substrate for periphyton as natural source of food
DOI:
https://doi.org/10.20950/1678-2305/bip.2023.49.e783Keywords:
Oreochromis niloticus, Ctenopharyngodon idella, Prochilodus lineatus, SustainabilityAbstract
As a productive and sustainable alternative to fish farmers, the present study aims to evaluate the use of substrate for periphyton growth in an Integrated Multitrophic Aquaculture (IMTA) with complementary species. The studied species were: Nile tilapia (Oreochromis niloticus), grass carp (Ctenopharyngodon idella) and curimbatá (Prochilodus lineatus). The experiment had four treatments with three replicates that evaluated the IMTAs: [T100] Cb:C – tilapia inside hapas fed on recommended feed, with grass carp and curimbatás outside the hapas making use of natural food; [T50] Cb:C – the same species distribution with tilapia fed 50 % of the daily amount of commercial diet. Cb:C 100 and Cb:C 50 – grass carp and curimbatás fed on recommended feed at two feeding rates (100% and 50%) with substrate for periphyton growth in the feeding restriction treatment. In phase II, tilapias were included in all the treatments as a complementary species. Growth performance of fish and physical-chemical parameters of water were evaluated. In the proposed models, the species were efficient in utilizing the feed and in nutrient cycling, achieving productivity of 6 t/ha in the system without water renewal. Inserting secondary and complementary species reduced the feed conversion ratio (FCR) to values of 0.95 in systems under feed restriction and 1.28 in the groups that received 100% of commercial feed. Considering the reduction of the FCR and the high productivity, farmers can diversify their products in the same area without increasing inputs.
References
American Public Health Association. 2005. Standard methods for the examination of water and wastewater. Washington, D.C.: American Public Health Association.
Barrington, K.; Chopin, T.; Robinson, S. 2009. Integrated multi-trophic aquaculture (IMTA) in marine temperate waters. In: Soto, D. (ed.). Integrated mariculture: a global review. Rome: FAO, p. 7-46.
Benedito, E.; Santana, A.R.A.; Werth, M. 2018. Divergence in energy sources for Prochilodus lineatus (Characiformes: Prochilodontidae) in Neotropical floodplains. Neotropical Ichthyology, 16(4): e160130. https://doi.org/10.1590/1982-0224-20160130
Bernardes, C.L.; Públio, J.Y. 2012. Proteína bruta no desenvolvimento de curimbas (Prochilodus scrofa). Semina: Ciências Agrárias, 33(1): 381-390. https://doi.org/10.5433/1679-0359.2012v33n1p381
Beveridge, M.C.M.; Baird, D.J. 2000. Diet, feeding and digestive physiology. In: Beveridge, M.C.M.; McAndrew, B.J. (eds.). Tilapias: Biology and Exploitation. Dordrecht: Springer, p. 59-87. Fish and Fisheries Series, v. 25. https://doi.org/10.1007/978-94-011-4008-9_3
Biswas, G.; Kumar, P.; Ghoshal, T.K.; Kailasam, M.; De, D.; Bera, A.; Mandal, B.; Sukumaran, K.; Vijayan, K.K. 2019. Integrated multi-trophic aquaculture (IMTA) outperforms conventional polyculture with respect to environmental remediation, productivity and economic return in brackishwater ponds. Aquaculture, 516:734626. https://doi.org/10.1016/j.aquaculture.2019.734626
Camargo, J.B.J.; Radünz Neto, J.; Emanuelli, T.; Lazzari, R.; Costa, M.L.; Losekann, M.E.; Santos Medeiros, T. 2006. Cultivo de alevinos de carpa capim (Ctenopharyngodon idella) alimentados com ração e forragens cultivadas. Current Agricultural Science and Technology, 12(2): 212-215.
Casaca, J. de M.; Tomazelli Junior, O.; Warken, J.A. 2005. Policultivos de peixes integrados: o modelo do oeste de Santa Catarina. Chapecó: Mércur.
Chilton, E.W.; Muoneke, M.I. 1992. Biology and management of grass carp (Ctenopharyngodon idella, Cyprinidae) for vegetation control: a North American perspective. Reviews in Fish Biology and Fisheries, 2: 283-320. https://doi.org/10.1007/BF00043520
Chopin, T.; Cooper, J.A.; Reid, G.; Cross, S.; Moore, C. 2012. Open-water integrated multi-trophic aquaculture: Environmental biomitigation and economic diversification of fed aquaculture by extractive aquaculture. Reviews in Aquaculture, 4(4): 209-220. https://doi.org/10.1111/j.1753-5131.2012.01074.x
Costa, M.L.; Radünz Neto, J.; Lazzari, R.; Losekann, M.E.; Sutili, F.J.; Brum, Â.Z.; Grzeczinski, J.A. 2008. Juvenis de carpa capim alimentados com capim teosinto e suplementados com diferentes taxas de arraçoamento. Ciência Rural, 38(2): 492-497. https://doi.org/10.1590/S0103-84782008000200031
Cudmore, B.; Mandrak, N.E. 2004. Biological Synopsis of Grass Carp (Ctenopharyngodon idella). Burlington: Great Lakes Laboratory for Fisheries and Aquatic Sciences.
Dantas, D.P.; Flickinger, D.L.; Costa, G.A.; Batlouni, S.R.; Moraes-Valenti, P.; Valenti, W.C. 2019. Technical feasibility of integrating Amazon river prawn culture during the first phase of tambaqui grow-out in stagnant ponds, using nutrient-rich water. Aquaculture, 516: 734611. https://doi.org/10.1016/j.aquaculture.2019.734611
David, F.S.; Proença, D.C.; Valenti, W.C. 2017. Phosphorus Budget in Integrated Multitrophic Aquaculture Systems with Nile Tilapia, Oreochromis niloticus, and Amazon River Prawn, Macrobrachium amazonicum. Journal of the World Aquaculture Society, 48(3): 402-414. https://doi.org/10.1111/jwas.12404
David, L.H.; Campos, D.W.J.; Pinho, S.M.; Romera, D.M.; Garcia, F. 2022a. Growth performance of Nile tilapia reared in cages in a farm dam submitted to a feed reduction strategy in a periphyton-based system. Aquaculture Research, 53(3): 1147-1150. https://doi.org/10.1111/are.15638
David, L.H.; Pinho, S.M.; Romera, D.M.; Campos, D.W.; Franchini, A.C.; Garcia, F. 2022b. Tilapia farming based on periphyton as a natural food source. Aquaculture, 547: 737544. https://doi.org/10.1016/j.aquaculture.2021.737544
Dempster, P.; Baird, D.J.; Beveridge, M.C.M. 1995. Can fish survive by filter-feeding on microparticles? Energy balance in tilapia grazing on algal suspensions. Journal of Fish Biology, 47(1): 7-17. https://doi.org/10.1111/j.1095-8649.1995.tb01868.x
Edwards, D.J. 1973. Aquarium studies on the consumption of small animals by O–group grass carp, Ctenopharyngodon idella (Val.). Journal of Fish Biology, 5(5): 599-605. https://doi.org/10.1111/j.1095-8649.1973.tb04493.x
Edwards, K.F.; Thomas, M.K.; Klausmeier, C.A.; Litchman, E. 2016. Phytoplankton growth and the interaction of light and temperature: A synthesis at the species and community level. Limnology and Oceanography, 61(4): 1232-1244. https://doi.org/10.1002/lno.10282
Flickinger, D.L.; Costa, G.A.; Dantas, D.P.; Moraes-Valenti, P.; Valenti, W.C. 2019. The budget of nitrogen in the grow-out of the Amazon river prawn (Macrobrachium amazonicum Heller) and tambaqui (Colossoma macropomum Cuvier) farmed in monoculture and in integrated multitrophic aquaculture systems. Aquaculture Research, 50(11): 3444-3461. https://doi.org/10.1111/are.14304
Flickinger, D.L.; Costa, G.A.; Dantas, D.P.; Proença, D.C.; David, F.S.; Durborow, R.M.; Moraes-Valenti, P.; Valenti, W.C. 2020a. The budget of carbon in the farming of the Amazon river prawn and tambaqui fish in earthen pond monoculture and integrated multitrophic systems. Aquaculture Reports, 17: 100340. https://doi.org/10.1016/j.aqrep.2020.100340
Flickinger, D.L.; Dantas, D.P.; Proença, D.C.; David, F.S.; Valenti, W.C. 2020b. Phosphorus in the culture of the Amazon river prawn (Macrobrachium amazonicum) and tambaqui (Colossoma macropomum) farmed in monoculture and in integrated multitrophic systems. Journal of the World Aquaculture Society, 51(4): 1002-1023. https://doi.org/10.1111/jwas.12655
Franchini, A.C.; Costa, G.A.; Pereira, S.A.; Valenti, W.C.; Moraes-Valenti, P. 2020. Improving production and diet assimilation in fish-prawn integrated aquaculture, using iliophagus species. Aquaculture, 521: 735048. https://doi.org/10.1016/j.aquaculture.2020.735048
Garcia, F.; Romera, D.M.; Sousa, N.S.; Paiva-Ramos, I.; Onaka, E.M. 2016. The potential of periphyton-based cage culture of Nile tilapia in a Brazilian reservoir. Aquaculture, 464: 229-235. https://doi.org/10.1016/j.aquaculture.2016.06.031
Garcia, F.; Sabbag, O.J.; Kimpara, J.M.; Romera, D.M.; Sousa, N.S.; Onaka, E.M.; Ramos, I.P. 2017. Periphyton-based cage culture of Nile tilapia: An interesting model for small-scale farming. Aquaculture, 479: 838-844. https://doi.org/10.1016/j.aquaculture.2017.07.024
Henry-Silva, G.G.; Alves, J.; Flickinger, D.; Gomes-Rebouças, R.; Bessa-Junior, A. 2023. Polyculture of Pacific White Shrimp Litopenaeus vannamei (Boone) and Red Seaweed Gracilaria birdiae (Greville) under Different Densities. Fishes, 8(1): 54. https://doi.org/10.3390/fishes8010054
Huchette, S.M.; Beveridge, M.C.; Baird, D.J.; Ireland, M. 2000. The impacts of grazing by tilapias (Oreochromis niloticus L.) on periphyton communities growing on artificial substrate in cages. Aquaculture, 186(1-2): 45-60. https://doi.org/10.1016/S0044-8486(99)00365-8
Ibrahim, A.N.A.F.; Castilho-Noll, M.S.M.; Valenti, W.C. 2023. Zooplankton community dynamics in response to water trophic state in integrated multitrophic aquaculture. Boletim do Instituto de Pesca, 49: 1-14. https://doi.org/10.20950/1678-2305/bip.2023.49.e730
Marques, A.M.; Boaratti, A.Z.; Belmudes, D.; Ferreira, J.R.C.; Mantoan, P.V.L.; Moraes-Valenti, P.; Valenti, W.C. 2021. Improving the Efficiency of Lambari Production and Diet Assimilation Using Integrated Aquaculture with Benthic Species. Sustainability, 13(18): 10196. https://doi.org/10.3390/su131810196
Milstein, A.; Joseph, D.; Peretz, Y.; Harpaz, S. 2005. Evaluation of organic tilapia culture in periphyton-based ponds. Israeli Journal of Aquaculture, 57(3): 143-155. https://doi.org/10.46989/001c.20414
Milstein, A.; Naor, A.; Barki, A.; Harpaz, S. 2013. Utilization of periphytic natural food as partial replacement of commercial food in organic tilapia culture-an overview. Transylvanian Review of Systematical and Ecological Research, 15(1): 49-60. https://doi.org/10.2478/trser-2013-0005
Moraes, C.R.F.; Attayde, J.L.; Henry-Silva, G.G. 2020. Stable isotopes of C and N as dietary indicators of Nile tilapia (Oreochromis niloticus) cultivated in net cages in a tropical reservoir. Aquaculture Reports, 18: 100458. https://doi.org/10.1016/j.aqrep.2020.100458
Moschini-Carlos, V. 1999. Importância, estrutura e dinâmica da comunidade perifítica nos ecossistemas aquáticos continentais. In: Pompêo, M.L.M. (ed.). Perspectivas na Limnologia no Brasil. São Luís: Gráfica e Editora União, p. 1-11.
Moura, G.S.; Oliveira, M.G.A.; Lanna, E.T.A.; Maciel Júnior, A.; Maciel, C.M.R.R. 2007. Desempenho e atividade de amilase em tilápias-do-nilo submetidas a diferentes temperaturas. Pesquisa Agropecuária Brasileira, 42(11): 1609-1615.https://doi.org/10.1590/s0100-204x2007001100013
Nascimento, T.G.; Matielo, M.D.; Mendonça, P.P.; Rodrigues, M.F.; Jesus Gonçalves, S.; Queiroz, M.A.Á. 2018. Desempenho de juvenis de carpa-capim (Ctenopharyngodon idella) alimentados com silagem de diferentes forrageiras tropicais. Boletim do Instituto de Pesca, 42(1): 112-118. https://doi.org/10.20950/1678-2305.2016v42n1p112
Satiro, T.M.; Almeida Neto, O.B.; Espósito, M.; Costa Ramos Neto, K.X.; Nogueira, C.H. 2021. Juvenis de carpa capim alimentados com ração e forrageira Zuri (Panicum maximum). Revista Científica Rural, 23(1): 239-252. https://doi.org/10.30945/rcr-v23i1.3980
Sponchiado, M.; Schwarzbold, A.; Rotta, M.A. 2018. Desempenho da carpa capim (Ctenopharyngodon idella) tendo como alimento a grama boiadeira (Luziola peruviana). Boletim do Instituto de Pesca, 35(2): 295-305.
Sverlij, S.B.; Espinach Ros, A.; Ortí, G. 1993. Synopsis de los datos biologicos del sabalo Prochilodus lineatus (Valenciennes, 1847). Food and Agriculture Organization of the United Nations. FAO Fisheries Synopsis.
Uddin, M.S.; Azim, M.E.; Wahab, M.A.; Verdegem, M.C.J. 2009. Effects of substrate addition and supplemental feeding on plankton composition and production in tilapia (Oreochromis niloticus) and freshwater prawn (Macrobrachium rosenbergii) polyculture. Aquaculture, 297(1-4): 99-105. https://doi.org/10.1016/j.aquaculture.2009.09.016
Valenti, W.C.; Kimpara, J.M.; Preto, B.D.L. 2011. Measuring aquaculture sustainability. World Aquaculture, 42(3): 26-30.
Wetzel, R.G. 1983. Periphyton of freshwater ecosystems. In: International Workshop on Periphyton of Freshwater Ecosystems, 1982, Växjö, Sweden.
Wetzel, R.G. 1990. Land-water interfaces: Metabolic and limnological regulators. SIL Proceedings, 1922-2010, 24(1): 6-24. https://doi.org/10.1080/03680770.1989.11898687
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Mariana Negri, Daiane Mompean Romera, Fabiana Garcia
This work is licensed under a Creative Commons Attribution 4.0 International License.