Application of biofloc technology in the larval rearing of zebrafish (Danio rerio)




Ammonia, Live food, Water reuse, Nutrient


The aim of this study was to investigate the different strategies of biofloc addition to zebrafish (Danio rerio) larviculture, and evaluate their growth and biochemical parameters. Three treatments were used: addition of 200 mL biofloc once at the start of the assay (O1), addition of 100 mL biofloc every seven days (1W), and addition of 100 mL biofloc every four days (2W). The 1W and 2W treatments also received 200 mL biofloc at the start of the assay. Regarding water quality, the only difference was the total suspended solid concentration, because the 2W treatment had a higher concentration in the final assay (127.6 ± 24.3 mg L-1). The final weight, survival rate, and juvenile percentile did not show statistical differences among the treatments. However, the O1 treatment exhibited a higher total length (11.93 ± 0.45 mm) than those in the 2W treatment. The juveniles in the 2W treatment exhibited lower nonprotein thiols and higher TBARS concentrations than those in the other treatments. Thus, the biofloc system can be a viable alternative to zebrafish larviculture without the use of conventional live food, and the addition of biofloc once (O1) at the beginning of larval rearing achieves good growth and survival results.


Adad, J.M.T. 1982. Controle Químico de Qualidade. Rio de Janeiro: Guanabara Dois, 204 p.

Ahmad, I.; Babitha Rani, A.M.; Verma, A.K.; Maqsood, M. 2017. Biofloc technology: an emerging avenue in aquatic animal healthcare and nutrition. Aquaculture International, 25: 1215-1226.

American Public Health Association. 1998. Standard Methods for the Examination of Water and Wastewater. Washington, D.C.: American Public Health Association, 1220 p.

Aoyama, Y.; Moriya, N.; Tanaka, S.; Taniguchi, T.; Hosokawa, H.; Maegawa, S. 2015. A Novel Method for Rearing Zebrafish by Using Freshwater Rotifers (Brachionus calyciflorus). Zebrafish, 12(4): 288-295.

Association of Official Analytical Chemists. 1995. Official methods of analysis. Washington, D.C.: Association of Official Analytical Chemists.

Avilés-López, J.A.; Castro-Castellón, A.E.; Polo-Hernández, A.; Trejo-Hernández, M.F.; Castro-Mejía, J.; Castro-Mejía, G. 2017. Comparison of weight gain of Astronotus ocellatus and Danio rerio cultured directly in biofloc system and live food diet enriched with heterotrophic bacteria. International Journal of Fisheries and Aquatic Studies, 5(5): 372-377.

Avnimelech, Y. 2012. Biofloc Technology: A Practical Guide Book. 2. ed. Louisiana: The World Aquaculture Society, 272 p.

Bligh, E.G.; Dyer, W.J. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8): 911-917.

Bradford, M.M.A. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2): 248-254.

Buege, J.A.; Aust, S.D. 1978. Microsomal lipid peroxidation. Methods in Enzymology, 52: 302-310.

Carvalho, A.P.; Araújo, L.; Santos, M.M. 2006. Rearing zebrafish (Danio rerio) larvae without live food: evaluation of a commercial, a practical and a purified starter diet on larval performance. Aquaculture Research, 37(11): 1107-1111.

Conceição, L.E.C.; Yúfera, M.; Makridis, P.; Morais, S.; Dinis, M.T. 2010. Live feeds for early stages of fish rearing. Aquaculture Research, 41(5): 613-640.

Cunha, L.; Besen, K.P.; Ha, N.; Uczay, J.; Skoronski, E.; Fabregat, T.E.H.P. 2020. Biofloc technology (BFT) improves skin pigmentation of goldfish (Carassius auratus). Aquaculture, 522: 735132.

Dantas, N.S.M. 2018. Larvicultura do pirarucu em sistema de bioflocos. 61f. Master dissertation. Manaus: Universidade Federal do Amazonas. Available at: Accessed on: Jan. 10, 2023.

De Schryver, P.; Crab, R.; Defoirdt, T.; Boon, N.; Verstraete, W. 2008. The basics of bio-flocs technology: The added value for aquaculture. Aquaculture, 277(3-4): 125-137.

Dilmi, A.; Refes, W.; Meknachi, A. 2021. Effects of C/N Ratio on Water Quality, Growth Performance, Digestive Enzyme Activity and Antioxidant Status of Nile Tilapia Oreochromis niloticus (Linnaeus, 1758) in Biofloc Based Culture System. Turkish Journal of Fisheries and Aquatic Sciences, 22(1):TRJFAS19754.

Doleželová, P.; Mácová, S.; Pištěková, V.; Svobodová, Z.; Bedáňová, I.; Voslářová, E. 2011. Nitrite toxicity assessment in Danio rerio and Poecilia reticulata. Acta Veterinaria BRNO, 80(3):309-312.

Ekasari, J.; Rivandi, D.R.; Firdausi, A.P.; Surawidjaja, E.H.; Zairin, M.; Bossier, P.; De Schryver, P. 2015. Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture, 441: 72-77.

Ekasari, J.; Suprayudi, M.A.; Wiyoto, W.; Hazanah, R.F.; Lenggara, G.S.; Sulistiani, R.; Alkahfi, M.; Jairin Jr., M. 2016. Biofloc technology application in African catfish fingerling production: the effects on the reproductive performance of broodstock and the quality of eggs and larvae. Aquaculture, 464: 349-356.

Ellman, G.L. 1959. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1): 70-77.

Evangelista, A.D.; Fortes, N.R.; Santiago, C.B. 2005. Comparison of some live organisms and artificial diet as feed for Asian catfish Clarias macrocephalus (Günther) larvae. Journal of Applied Ichthyology, 21(5): 437-443.

Farias, M.; Certal, A.C. 2016. Different feeds and feeding regimens have an impact on zebrafish larval rearing and breeding performance. International Journal of Marine Biology and Research, 1(1): 1-8.

Gaona, C.A.P.G.; Almeida, M.S.; Viau, V.; Poersch, L.H.; Wasielesky, W.J. 2017. Effect of different total suspended solids levels on a Litopenaeus vannamei (Boone, 1931) BFT culture system during biofloc formation. Aquaculture Research, 48(3), 1070-1079.

Hammer, H.S. 2020. Water Quality for Zebrafish Culture. In: Cartner, S.C.; Eisen, J.S.; Farmer, S.C.; Guillemin, K.J.; Kent, M.L.; Sanders, G.E. (eds.). The zebrafish biomedical research: Biology, Husbandry, Diseases, and Research Applications. London: Academic Press, p. 321-335.

Hargreaves, J.A. 2013. Biofloc production systems for aquaculture. Stoneville: Southern Regional Aquaculture Center. v. 4503.

Kagali, R.N.; Ogello, E.O.; Kiama, C.W.; Jim, H.-J.; Wullur, S.; Sakakura, Y.; Hagiwara, A. 2022. Culturing live foods for fish larviculture using non-microalgal diet: The role of waste-generated bacteria and selected commercial probiotics—A review. Aquaculture Fish and Fisheries, 2(2): 71-81.

Khanjani, M.H.; Mozanzadeh, M.T.; Sharifinia, M.; Emerenciano, M.G.C. 2023. Biofloc: A sustainable dietary supplement, nutritional value and functional properties. Aquaculture, 562: 738757.

Khanjani, M.H., Sharifinia, M. 2020. Biofloc technology as a promising tool to improve aquaculture production. Reviews in Aquaculture, 12(3): 1836-1850.

Lawrence, C. 2020. Zebrafish larviculture. In: Cartner, S.C.; Eisen, J.S.; Farmer, S.C.; Guillemin, K.J.; Kent, M.L.; Sanders, G.E. (eds.). The zebrafish biomedical research: Biology, Husbandry, Diseases, and Research Applications. London: Academic Press, p. 365-378.

Leitemperger, J.; Müller, T.E.; Cerezer, C.; Marins, A.T.; Moura, L.K.; Loro, V.L. 2019. Behavioral and biochemical parameters in guppy (Poecillia vivipara) following exposure to waterborne zinc in salt or hard water. Molecular Biology Reports, 46: 3399-3409.

Lubzens, E.; Zmora, O. 2003. Production and nutritional value of rotifers. In: Stottrup, J.G.; McEvoy, L.A. (Eds.). Live Feeds in Marine A Martins, G.; Diogo, P.; Pinto, W.; Gavaia, P.J. 2019. Early transition to microdiets improves growth, reproductive performance and reduces skeletal anomalies in zebrafish (Danio rerio). Zebrafish, 16(3): 300-307.

Navarro-Guillén, C.; Vale Pereira, G.; Lopes, A.; Colen, R.; Engrola, S. 2021. Egg nutritional modulation with amino acids improved performance in zebrafish larvae. PLoS One, 16(4): e0248356.

Nelson, D.P.; Kiesow, L.A. 1972. Enthalpy of decomposition of hydrogen peroxide by catalase at 25°C (with molar extinction coefficients of H2O2 solution in the UV). Analytical Biochemistry, 49(2): 474-478.

Padeniya, U.; Larson, E.T.; Septriani, S.; Pataueg, A.; Kafui, A.R.; Hasan, E.; Mmaduakonam, O.S.; Kim, G.-D.; Kiddane, A.T.; Brown, C.L. 2022. Probiotic Treatment Enhances Pre-feeding Larval Development and Early Survival in Zebrafish Danio rerio. Journal of Aquatic Animal Health, 34(1): 3-11.

Printzi, A.; Kourkouta, C.; Fragkoulis, S.; Dimitriadi, A.; Geladakis, G.; Orfanakis, M.; Mazurais, D.; Zambonino-Infante, J.-L.; Koumoundouros, G. 2021. Balancing between Artemia and microdiet usage for normal skeletal development in zebrafish (Danio rerio). Journal of Fish Diseases, 44(11): 1689-1696.

Singleman, C.; Holtzman, N.G. 2014. Growth and Maturation in the Zebrafish, Danio Rerio: A Staging Tool for Teaching and Research. Zebrafish, 11(4): 396-406.

Strickland, J.D.H.; Parsons, T.R. 1972. A Practical Handbook of Seawater Analysis. Ottawa: Fisheries Research Board of Canada, 310 p.

Teame, T.; Zhang, Z.; Ran, C.; Zhang, H.; Yang, Y.; Ding, Q.; Xie, M.; Gao, C.; Ye, Y.; Duan, M.; Zhou, Z. 2019. The use of zebrafish (Danio rerio) as biomedical models. Animal Frontiers, 9(3): 68-77.

Vasconcelos, S.M.L.; Goulart, M.O.F.; Moura, J.B.F.; Manfredini, V.; Benfato, M.S.; Kubota, L.T. 2007. Espécies reativas de oxigênio e de nitrogênio, antioxidantes e marcadores de dano oxidativo em sangue humano: principais métodos analíticos para sua determinação. Química Nova, 30(5): 1323-1338.

Verdouw, H.; Van Echteld, C.J.A.; Dekkers, E.M.J. 1978. Ammonia determination based on indophenols formation with sodium salicylate. Water Research, 12(6): 399-402.

Watts, S.A.; Lawrence, C.; Powell, M.; D’Abramo, L.R. 2016. The vital relationship between nutrition and health in zebrafish. Zebrafish, 13(Suppl. 1): S72-S76.






Scientific Article

Most read articles by the same author(s)