Aplicação da tecnologia de bioflocos na larvicultura do zebrafish (Danio rerio)

Autores

DOI:

https://doi.org/10.20950/1678-2305/bip.2024.50.e882

Palavras-chave:

Amônia, Alimento vivo, Reaproveitamento de água, Nutriente

Resumo

O objetivo deste estudo foi investigar diferentes estratégias de adição de biofloco na larvicultura de zebrafish (Danio rerio), avaliando o crescimento e os parâmetros bioquímicos. Três tratamentos foram utilizados: adição de 200 mL de biofloco uma vez no início do ensaio (O1), adição de 100 mL de biofloco a cada sete dias (1W) e adição de 100 mL de biofloco a cada quatro dias (2W). Os tratamentos 1W e 2W também receberam 200 mL de biofloco no início do ensaio. Em relação à qualidade da água, a diferença ocorreu na concentração de sólidos suspensos totais, pois o tratamento 2W teve maior concentração no fim do experimento (127,6 ± 24,3 mg·L-1). Ao final do ensaio, o peso final, a sobrevivência e a porcentagem de juvenis e larvas não apresentaram diferença entre os tratamentos. Entretanto, no tratamento O1, os peixes apresentaram maior comprimento total (11,93 ± 0,45 mm) do que no tratamento 2W. Os juvenis possuíram menor concentração de tiois não proteicos e maior substâncias reativas ao ácido tiobarbitúrico no tratamento 2W. Assim, o sistema de bioflocos pode ser uma alternativa à larvicultura de zebrafish sem utilizar alimento vivo, e a adição de bioflocos uma vez (O1) no início da larvicultura proporciona bons resultados de crescimento e sobrevivência.

Referências

Adad, J.M.T. 1982. Controle Químico de Qualidade. Rio de Janeiro: Guanabara Dois, 204 p.

Ahmad, I.; Babitha Rani, A.M.; Verma, A.K.; Maqsood, M. 2017. Biofloc technology: an emerging avenue in aquatic animal healthcare and nutrition. Aquaculture International, 25: 1215-1226. https://doi.org/10.1007/s10499-016-0108-8

American Public Health Association. 1998. Standard Methods for the Examination of Water and Wastewater. Washington, D.C.: American Public Health Association, 1220 p.

Aoyama, Y.; Moriya, N.; Tanaka, S.; Taniguchi, T.; Hosokawa, H.; Maegawa, S. 2015. A Novel Method for Rearing Zebrafish by Using Freshwater Rotifers (Brachionus calyciflorus). Zebrafish, 12(4): 288-295. https://doi.org/10.1089/zeb.2014.1032

Association of Official Analytical Chemists. 1995. Official methods of analysis. Washington, D.C.: Association of Official Analytical Chemists.

Avilés-López, J.A.; Castro-Castellón, A.E.; Polo-Hernández, A.; Trejo-Hernández, M.F.; Castro-Mejía, J.; Castro-Mejía, G. 2017. Comparison of weight gain of Astronotus ocellatus and Danio rerio cultured directly in biofloc system and live food diet enriched with heterotrophic bacteria. International Journal of Fisheries and Aquatic Studies, 5(5): 372-377.

Avnimelech, Y. 2012. Biofloc Technology: A Practical Guide Book. 2. ed. Louisiana: The World Aquaculture Society, 272 p.

Bligh, E.G.; Dyer, W.J. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8): 911-917. https://doi.org/10.1139/o59-099

Bradford, M.M.A. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2): 248-254. https://doi.org/10.1006/abio.1976.9999https://orcid.org/0000-0003-3221-2131

Buege, J.A.; Aust, S.D. 1978. Microsomal lipid peroxidation. Methods in Enzymology, 52: 302-310. https://doi.org/10.1016/s0076-6879(78)52032-6

Carvalho, A.P.; Araújo, L.; Santos, M.M. 2006. Rearing zebrafish (Danio rerio) larvae without live food: evaluation of a commercial, a practical and a purified starter diet on larval performance. Aquaculture Research, 37(11): 1107-1111. https://doi.org/10.1111/j.1365-2109.2006.01534.x

Conceição, L.E.C.; Yúfera, M.; Makridis, P.; Morais, S.; Dinis, M.T. 2010. Live feeds for early stages of fish rearing. Aquaculture Research, 41(5): 613-640. https://doi.org/10.1111/j.1365-2109.2009.02242.x

Cunha, L.; Besen, K.P.; Ha, N.; Uczay, J.; Skoronski, E.; Fabregat, T.E.H.P. 2020. Biofloc technology (BFT) improves skin pigmentation of goldfish (Carassius auratus). Aquaculture, 522: 735132. https://doi.org/10.1016/j.aquaculture.2020.735132

Dantas, N.S.M. 2018. Larvicultura do pirarucu em sistema de bioflocos. 61f. Master dissertation. Manaus: Universidade Federal do Amazonas. Available at: https://tede.ufam.edu.br/bitstream/tede/6642/5/Disserta%c3%a7%c3%a3o_Naiara%20Dantas%20PPGCAN. Accessed on: Jan. 10, 2023.

De Schryver, P.; Crab, R.; Defoirdt, T.; Boon, N.; Verstraete, W. 2008. The basics of bio-flocs technology: The added value for aquaculture. Aquaculture, 277(3-4): 125-137. https://doi.org/10.1016/j.aquaculture.2008.02.019

Dilmi, A.; Refes, W.; Meknachi, A. 2021. Effects of C/N Ratio on Water Quality, Growth Performance, Digestive Enzyme Activity and Antioxidant Status of Nile Tilapia Oreochromis niloticus (Linnaeus, 1758) in Biofloc Based Culture System. Turkish Journal of Fisheries and Aquatic Sciences, 22(1):TRJFAS19754. https://doi.org/10.4194/TRJFAS19754

Doleželová, P.; Mácová, S.; Pištěková, V.; Svobodová, Z.; Bedáňová, I.; Voslářová, E. 2011. Nitrite toxicity assessment in Danio rerio and Poecilia reticulata. Acta Veterinaria BRNO, 80(3):309-312. https://doi.org/10.2754/avb201180030309

Ekasari, J.; Rivandi, D.R.; Firdausi, A.P.; Surawidjaja, E.H.; Zairin, M.; Bossier, P.; De Schryver, P. 2015. Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture, 441: 72-77. https://doi.org/10.1016/j.aquaculture.2015.02.019

Ekasari, J.; Suprayudi, M.A.; Wiyoto, W.; Hazanah, R.F.; Lenggara, G.S.; Sulistiani, R.; Alkahfi, M.; Jairin Jr., M. 2016. Biofloc technology application in African catfish fingerling production: the effects on the reproductive performance of broodstock and the quality of eggs and larvae. Aquaculture, 464: 349-356. https://doi.org/10.1016/j.aquaculture.2016.07.013

Ellman, G.L. 1959. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1): 70-77. https://doi.org/10.1016/0003-9861(59)90090-6

Evangelista, A.D.; Fortes, N.R.; Santiago, C.B. 2005. Comparison of some live organisms and artificial diet as feed for Asian catfish Clarias macrocephalus (Günther) larvae. Journal of Applied Ichthyology, 21(5): 437-443. https://doi.org/10.1111/j.1439-0426.2005.00643.x

Farias, M.; Certal, A.C. 2016. Different feeds and feeding regimens have an impact on zebrafish larval rearing and breeding performance. International Journal of Marine Biology and Research, 1(1): 1-8. https://doi.org/10.15226/24754706/1/1/00101

Gaona, C.A.P.G.; Almeida, M.S.; Viau, V.; Poersch, L.H.; Wasielesky, W.J. 2017. Effect of different total suspended solids levels on a Litopenaeus vannamei (Boone, 1931) BFT culture system during biofloc formation. Aquaculture Research, 48(3), 1070-1079. https://doi.org/10.1111/are.12949

Hammer, H.S. 2020. Water Quality for Zebrafish Culture. In: Cartner, S.C.; Eisen, J.S.; Farmer, S.C.; Guillemin, K.J.; Kent, M.L.; Sanders, G.E. (eds.). The zebrafish biomedical research: Biology, Husbandry, Diseases, and Research Applications. London: Academic Press, p. 321-335.

Hargreaves, J.A. 2013. Biofloc production systems for aquaculture. Stoneville: Southern Regional Aquaculture Center. v. 4503.

Kagali, R.N.; Ogello, E.O.; Kiama, C.W.; Jim, H.-J.; Wullur, S.; Sakakura, Y.; Hagiwara, A. 2022. Culturing live foods for fish larviculture using non-microalgal diet: The role of waste-generated bacteria and selected commercial probiotics—A review. Aquaculture Fish and Fisheries, 2(2): 71-81. https://doi.org/10.1002/aff2.33

Khanjani, M.H.; Mozanzadeh, M.T.; Sharifinia, M.; Emerenciano, M.G.C. 2023. Biofloc: A sustainable dietary supplement, nutritional value and functional properties. Aquaculture, 562: 738757. https://doi.org/10.1016/j.aquaculture.2022.738757

Khanjani, M.H., Sharifinia, M. 2020. Biofloc technology as a promising tool to improve aquaculture production. Reviews in Aquaculture, 12(3): 1836-1850. https://doi.org/10.1111/raq.12412

Lawrence, C. 2020. Zebrafish larviculture. In: Cartner, S.C.; Eisen, J.S.; Farmer, S.C.; Guillemin, K.J.; Kent, M.L.; Sanders, G.E. (eds.). The zebrafish biomedical research: Biology, Husbandry, Diseases, and Research Applications. London: Academic Press, p. 365-378.

Leitemperger, J.; Müller, T.E.; Cerezer, C.; Marins, A.T.; Moura, L.K.; Loro, V.L. 2019. Behavioral and biochemical parameters in guppy (Poecillia vivipara) following exposure to waterborne zinc in salt or hard water. Molecular Biology Reports, 46: 3399-3409. https://doi.org/10.1007/s11033-019-04802-x

Lubzens, E.; Zmora, O. 2003. Production and nutritional value of rotifers. In: Stottrup, J.G.; McEvoy, L.A. (Eds.). Live Feeds in Marine A Martins, G.; Diogo, P.; Pinto, W.; Gavaia, P.J. 2019. Early transition to microdiets improves growth, reproductive performance and reduces skeletal anomalies in zebrafish (Danio rerio). Zebrafish, 16(3): 300-307. https://doi.org/10.1089/zeb.2018.1691

Navarro-Guillén, C.; Vale Pereira, G.; Lopes, A.; Colen, R.; Engrola, S. 2021. Egg nutritional modulation with amino acids improved performance in zebrafish larvae. PLoS One, 16(4): e0248356. https://doi.org/10.1371/journal.pone.0248356

Nelson, D.P.; Kiesow, L.A. 1972. Enthalpy of decomposition of hydrogen peroxide by catalase at 25°C (with molar extinction coefficients of H2O2 solution in the UV). Analytical Biochemistry, 49(2): 474-478. https://doi.org/10.1016/0003-2697(72)90451-4

Padeniya, U.; Larson, E.T.; Septriani, S.; Pataueg, A.; Kafui, A.R.; Hasan, E.; Mmaduakonam, O.S.; Kim, G.-D.; Kiddane, A.T.; Brown, C.L. 2022. Probiotic Treatment Enhances Pre-feeding Larval Development and Early Survival in Zebrafish Danio rerio. Journal of Aquatic Animal Health, 34(1): 3-11. https://doi.org/10.1002/aah.10148

Printzi, A.; Kourkouta, C.; Fragkoulis, S.; Dimitriadi, A.; Geladakis, G.; Orfanakis, M.; Mazurais, D.; Zambonino-Infante, J.-L.; Koumoundouros, G. 2021. Balancing between Artemia and microdiet usage for normal skeletal development in zebrafish (Danio rerio). Journal of Fish Diseases, 44(11): 1689-1696. https://doi.org/10.1111/jfd.13487

Singleman, C.; Holtzman, N.G. 2014. Growth and Maturation in the Zebrafish, Danio Rerio: A Staging Tool for Teaching and Research. Zebrafish, 11(4): 396-406. https://doi.org/10.1089/zeb.2014.0976

Strickland, J.D.H.; Parsons, T.R. 1972. A Practical Handbook of Seawater Analysis. Ottawa: Fisheries Research Board of Canada, 310 p.

Teame, T.; Zhang, Z.; Ran, C.; Zhang, H.; Yang, Y.; Ding, Q.; Xie, M.; Gao, C.; Ye, Y.; Duan, M.; Zhou, Z. 2019. The use of zebrafish (Danio rerio) as biomedical models. Animal Frontiers, 9(3): 68-77. https://doi.org/10.1093/af/vfz020

Vasconcelos, S.M.L.; Goulart, M.O.F.; Moura, J.B.F.; Manfredini, V.; Benfato, M.S.; Kubota, L.T. 2007. Espécies reativas de oxigênio e de nitrogênio, antioxidantes e marcadores de dano oxidativo em sangue humano: principais métodos analíticos para sua determinação. Química Nova, 30(5): 1323-1338. https://doi.org/10.1590/S0100-40422007000500046

Verdouw, H.; Van Echteld, C.J.A.; Dekkers, E.M.J. 1978. Ammonia determination based on indophenols formation with sodium salicylate. Water Research, 12(6): 399-402. https://doi.org/10.1016/0043-1354(78)90107-0

Watts, S.A.; Lawrence, C.; Powell, M.; D’Abramo, L.R. 2016. The vital relationship between nutrition and health in zebrafish. Zebrafish, 13(Suppl. 1): S72-S76. https://doi.org/10.1089/zeb.2016.1299

Downloads

Publicado

2024-02-05

Edição

Seção

Artigo cientí­fico

Artigos mais lidos pelo mesmo(s) autor(es)