Meta-analysis of 87Sr/86Sr ratios in otoliths to establish thresholds for determining fish movement

Authors

DOI:

https://doi.org/10.20950/1678-2305/bip.2023.49.e832

Keywords:

Migratory fish, Fish home range, Strontium isotopes, Geochemistry, Rheophilic fish

Abstract

Unpublished data were combined with a literature review to test a hypothesis of whether there is a pattern for classifying fish as “movers” or “residents” according to variability in strontium isotope ( 87 Sr/ 86 Sr) ratios in otoliths as a function of its environmental fingerprint. The variability in Sr ratios found in the otoliths of fish specimens as a percentage of isotopic environmental variability was used to determine the intensity of movement in a given study area (POEVSri index). A classic meta-analysis and a frequentist regression were applied to obtain a logistic model to describe the pattern. The meta-analysis returned a POEVSri limit of 28.95% for sedentary individuals and the logistic model shows a high probability of movement for POEVSri indices over 32%. There is a gradient of movement probabilities in the POEVSri interval from 8 to 32%, with each class having equal odds when POEVSri is approximately 20%. Regarding applicability for future studies, if aspects such as sufficient spatial and seasonal water sampling are addressed, the model provides two different thresholds for fish: a priori “movers” are those with POEVSri ≥ 32%, and resident fish have POEVSri ≤ 8%.

References

Avigliano, E.; Pisonero, J.; Bouchez, J.; Pouilly, M.; Domanico, A.; Sánchez, S.; Volpedo, A.V. 2021. Otolith Sr/Ca ratio complements Sr isotopes to reveal fish migration in large basins with heterogeneous geochemical landscapes. Environmental Biology of Fishes, 104(3): 277-292. https://doi.org/10.1007/s10641-021-01074-y

Barnett-Johnson, R.; Teel, D.J.; Casillas, E. 2010. Genetic and otolith isotopic markers identify salmon populations in the Columbia River at broad and fine geographic scales. Environmental Biology of Fishes, 89(3): 533-546. https://doi.org/10.1007/s10641-010-9662-5

Barroco, L.S.A. 2019. O efeito de barragens hidrelétricas sobre populações de peixes de rios de águas pretas na Amazônia: uma abordagem com o uso de marcadores biogeoquímicos e moleculares. Doctoral Thesis. Universidade Federal do Amazonas. Available at: https://tede.ufam.edu.br/ bitstream/tede/7475/2/Tese_LorenzoBarroco_PPGCIPET.pdf. Accessed on: Mar. 30, 2023.

Barrow, J.S.; Yen, J.D.; Koehn, J.D.; Zampatti, B.P.; Thiem, J.D.; Tonkin, Z.; Strawbridge, A.; Morrongiello, J. R.

Lifetime movement history is associated with variable growth of a potamodromous freshwater fish.

Journal of Animal Ecology, 90(11): 2560-2572. https://doi.org/10.1111/1365-2656.13561

Bouchez, J.; Lajeunesse, E.; Gaillardet, J.; France-Lanord, C.; Dutra-Maia, P.; Maurice, L. 2010. Turbulent mixing in the Amazon River: The isotopic memory of confluences. Earth and Planetary Science Letters, 290(1-2): 37-43.https://doi.org/10.1016/j.epsl.2009.11.054

Brennan, S.R.; Zimmerman, C.E.; Fernandez, D.P.; Cerling, T.E.; McPhee, M.V.; Wooller, M.J. 2015. Strontium isotopes delineate fine-scale natal origins and migration histories of Pacific salmon. Science Advances, 1(4): e1400124. https://doi.org/10.1126/sciadv.1400124

Campana, S.E. 1999. Chemistry and composition of fish otoliths: pathways, mechanisms, and applications. Marine Ecology Progress Series, 188: 263-297.

Castello, L. 2008. Lateral migration of Arapaima gigas in floodplains of the Amazon. Ecology of Freshwater Fish, 17(1): 38-46. https://doi.org/10.1111/j.1600-0633.2007.00255.x

Cohen, J. 1992. A power primer. Psychological Bulletin, 112(1):155-159. https://doi.org/10.1037//00332909.112.1.155

Cottrell, A.; Lucchetti, R. 2021. GRETL - Gnu Regression, Econometrics and Time-series Library, version 2021b.

Software written in C Language based on ESL (Econometrics Software Library, by Ramu Ramanathan). Available at: https://gretl.sourceforge.net/pt.html. Accessed on: Mar. 30, 2023.

Crook, D.A.; Lacksen, K.; King, A.J.; Buckle, D.J.; Tickell, S.J.; Woodhead, J.D.; Maas, R.; Townsend, S.A.; Douglas, M.M. 2017. Temporal and spatial variation in strontium in a tropical river: implications for otolith chemistry analyses of fish migration. Canadian Journal of Fisheries and Aquatic Sciences, 74(4): 533-545. https://doi.org/10.1139/cjfas-2016-0153

David, B.O.; Jarvis, M.; Özkundakci, D.; Collier, K.J.; Hicks, A.S.; Reid, M. 2019. To sea or not to sea? Multiple lines of evidence reveal the contribution of non-diadromous recruitment for supporting endemic fish populations within New Zealand’s longest river. Aquatic Conservation: Marine and Freshwater Ecosystems, 29(9): 1409-1423. https://doi.org/10.1002/aqc.3022

Deeks, J.J.; Altman, D.G.; BradBurn, M.J. 2001. Statistical methods for examining heterogeneity and combining results from several studies in meta-analysis. In: Egger, M.; Smith, G.D.; Altman, D.G. (eds.). Systematic Reviews in Health Care. Wiley. p. 285-312. https://doi.org/10.1002/9780470693926.ch15

DerSimonian, R.; Laird, N. 1986. Meta-analysis in clinical trials. Controlled Clinical Trials, 7(3): 177-188. https://doi.org/10.1016/0197-2456(86)90046-2

Duponchelle, F.; Isaac, V.J.; Doria, C.R.C.; Van Damme, P.A.; Herrera-R, G.A.; Anderson, E.P.; Cruz, R.E.; Hauser, M.; Hermann, T.W.; Agudelo, E.; Bonilla-Castillo, C. 2021. Conservation of migratory fishes in the Amazon basin. Aquatic Conservation: Marine and Freshwater Ecosystems, 31(5): 1087-1105. https://doi.org/10.1002/aqc.3550

Duponchelle, F.; Pouilly, M.; Pécheyran, C.; Hauser, M.; Renno, J.F.; Panfili, J.; Baras, E. 2016. Trans-Amazonian natal homing in giant catfish. Journal of Applied Ecology, 53(5):1511-1520. https://doi.org/10.1111/1365-2664.12665

Eastin, R.; Faure, G. 1970. Seasonal variation of the solute content and the Sr87/Sr86 ratio of the Olentangy and Scioto Rivers at Columbus, Ohio. The Ohio Journal of Science, 70: 170-179.

Farrell, J.; Campana, S.E. 1996. Regulation of calcium and strontium deposition on the otoliths of juvenile tilapia, Oreochromis niloticus. Comparative Biochemistry and Physiology Part A: Physiology, 115(2): 103-109. https://doi.org/10.1016/0300-9629(96)00015-1

Field, A.P.; Gillett, R. 2010. How to do a meta-analysis. British Journal of Mathematical and Statistical Psychology, 63(3): 665-694. https://doi.org/10.1348/000711010X502733

Fleiss, J.L. 1993. Review papers: The statistical basis of metaanalysis. Statistical Methods in Medical Research, 2(2): 121-145. https://doi.org/10.1177/096228029300200202

Gillanders, B.M. 2005. Otolith chemistry to determine movements of diadromous and freshwater fish. Aquatic Living Resources, 18(3): 291-300. https://doi.org/10.1051/alr:2005033

Hauser, M.; Doria, C.R.; Santos, R.V.; García-Vasquez, A.; Pouilly, M.; Pécheyran, C.; Ponzevera, E.; Torrente-Vilara, G.; Bérail, S.; Panfili, J.; Darnaude, A.; Renno, J.; García-Dávila, C.; Nuñez, J.; Ferraton, F.; Vargas, G.; Duponchelle, F. 2019. Shedding light on the migratory patterns of the Amazonian goliath catfish, Brachyplatystoma platynemum, using otolith 87Sr/86Sr analyses. Aquatic Conservation: Marine and Freshwater Ecosystems, 29(3): 397-408. https://doi.org/10.1002/aqc.3046

Hauser, M.; Duponchelle, F.; Hermann, T.W.; Limburg, K.E.; Castello, L.; Stewart, D.J.; Torrente-Vilara, G.; García-Vásquez, A.; García-Davila, C.; Pouilly, M.; Pecheyran, C.; Ponzevera, E.; Renno, J.; Moret, A.S.; Doria, C.R. 2020. Unmasking continental natal homing in goliath catfish from the upper Amazon. Freshwater Biology, 65(2): 325-336. https://doi.org/10.1111/fwb.13427

Hedges, L.V. 1984. Estimation of effect size under nonrandom sampling: The effects of censoring studies yielding statistically insignificant mean differences. Journal of Educational Statistics, 9(1): 61-85. https://doi.org/10.2307/1164832

Hedges, L.V.; Olkin, I. 1983. Regression models in research synthesis. American Statistician, 37(2): 137-140. https://doi.org/10.2307/2685874

Hedges, L.V.; Vevea, J.L. 1998. Fixed and random effects models in meta-analysis. Psychological Methods, 3(4): 486-504. https://doi.org/10.1037/1082-989X.3.4.486

Hegg, J.C.; Kennedy, B.P.; Fremier, A.K. 2013. Predicting strontium isotope variation and fish location with bedrock geology: Understanding the effects of geologic heterogeneity. Chemical Geology, 360-361: 89-98. https://doi.org/10.1016/j.chemgeo.2013.10.010

Kennedy, B.P.; Blum, J.D.; Folt, C.L.; Nislow, K.H. 2000. Using natural strontium isotopic signatures as fish markers: methodology and application. Canadian Journal of Fisheries and Aquatic Sciences, 57(11): 2280-2292. https://doi.org/10.1139/cjfas-57-11-2280

Konstantopoulos, S.; Hedges, L.V. 2009. Analyzing effect sizes: Fixed-effects models. In: Cooper, H.; Hedges, L.V.; Valentine, J.V. (Eds.). Handbook of Research Synthesis and Meta-Analysis. Russell Sage Foundation. p. 279-294.

Leggett, W.C. 1985. The role of migrations in the life history evolution of fish. Contributions in Marine Science. In: Rankin, M.A. (ed.). Migration: Mechanisms and Adaptive Significance. The University of Texas. p. 277-295.

Nathan, R.; Getz, W.M.; Revilla, E.; Holyoak, M.; Kadmon, R.; Saltz, D.; Smouse, P.E. 2008. A movement ecology paradigm for unifying organismal movement research. Proceedings of the National Academy of Sciences, 105(49): 19052-19059. https://doi.org/10.1073/pnas.0800375105

Pereira, L.A.; Santos, R.V.; Hauser, M.; Duponchelle, F.; Carvajal, F.; Pecheyran, C.; Bérail, S.; Pouilly, M. 2019. Commercial traceability of Arapaima spp. fisheries in the Amazon basin: can biogeochemical tags be useful? Biogeosciences, 16(8): 1781-1797. https://doi.org/10.5194/bg-16-1781-2019

R Core Team. 2000. R language definition. Vienna: R Foundation for Statistical Computing. Available at: https://cran.rproject.org/doc/manuals/r-devel/R-lang.html. Accessed on: Mar. 30, 2023.

R Studio Team. 2022. RStudio: Integrated Development for R. RStudio, “Prairie Trillium” Release for Windows. Boston: R Studio Team. Available at: http://www.rstudio.com/. Accessed on: Mar. 30, 2023.

Reis-Santos, P.; Gillanders, B.M.; Sturrock, A.M.; Izzo, C.; Oxman, D.S.; Lueders-Dumont, J.A.; Hüssy, K.; Tanner, S.E.; Rogers, T.; Doubleday, Z.A.; Andrews, A.H.; Trueman, C.; Brophy, D.; Thiem, J.D.; Baumgartner, L.J.; Willmes, M.; Chung, M.T.; Johnson, R.C.; Heimbrand, Y.; Limburg, K.E.; Walther, B.D. 2022. Reading the biomineralized book of life: expanding otolith biogeochemical research and applications for fisheries and ecosystem-based management. Reviews in Fish Biology and Fisheries, 33: 411-449. https://doi.org/10.1007/s11160-022-09720-z

Rosenthal, R. 1979. The file drawer problem and tolerance for null results. Psychological Bulletin, 86(3): 638-641. https://doi.org/10.1037/0033-2909.86.3.638

Sand-Jensen, K. 2007. How to write consistently boring scientific literature. Oikos, 116(5): 723-727. https://doi.org/10.1111/j.0030-1299.2007.15674.x

Santos, R.V.; Sondag, F.; Cochonneau, G.; Lagane, C.; Brunet, P.; Hattingh, K.; Chaves, J.G.S. 2015. Source area and seasonal 87Sr/86Sr variations in rivers of the Amazon basin. Hydrological Processes, 29(2): 187-197. https://doi.org/10.1002/hyp.10131

Schwarzer, G.; Carpenter, J.R.; Rücker, G. 2015. Meta-Analysis with R. Switzerland: Springer International Publishing, 256 p.

Secor, D.H. 2015. Migration ecology of marine fishes. Baltimore: Johns Hopkins University Press, 304 p.

Sousa, R.G.C.; Humston, R.; Freitas, C.E.C. 2016. Movement patterns of adult peacock bass Cichla temensis between tributaries of the middle Negro River basin (Amazonas– Brazil): an otolith geochemical analysis. Fisheries Management and Ecology, 23(1): 76-87. https://doi.org/10.1111/fme.12166

Sousa, R.G.C.; Rosa, F.R.; Longo, J.M.; Santos, J.C.C.; Casseb, A.A.; Militão, J.S.L.T. (unpublished). Final Technical Report for R&D Project PD-00700-0119/2019 in the Verde River. 253 p.

Stubben, C.; Milligan, B.; Nantel, P.; Stubben, M.C. 2022. Package “popbio” - Construction and Analysis of Matrix Population Models, version 2.7. 77 p.

Thorrold, S.R.; Hare, J.A. 2002. Otolith applications in reef fish ecology. In: Sale, P.F. (ed.). Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem. San Diego: Academic Press, p. 243-264.

Tran, N.T.; Labonne, M.; Chung, M.T.; Wang, C.H.; Huang, K.F.; Durand, J.D.; Grudpan, C.; Chan, B.; Hoang, H.D.; Panfili, J. 2021. Natal origin and migration pathways of Mekong catfish (Pangasius krempfi) using strontium isotopes and trace element concentrations in environmental water and otoliths. PLoS One, 16(6): e0252769. https://doi.org/10.1371/journal.pone.0252769

Tzadik, O.E.; Curtis, J.S.; Granneman, J.E.; Kurth, B.N.; Pusack, T.J.; Wallace, A.A.; Hollander, D.J.; Peebles, B.P.; Stallings, C.D. 2017. Chemical archives in fishes beyond otoliths: A review on the use of other body parts as chronological recorders of microchemical constituents for expanding interpretations of environmental, ecological, and lifehistory changes. Limnology and Oceanography: Methods, 15(3): 238-263. https://doi.org/10.1002/lom3.10153

Viechtbauer, W.; Viechtbauer, M.W. 2015. Package ‘metafor’. The Comprehensive R Archive Network. Available at: http://cran.r-project.org/web/packages/ metafor/metafor.pdf. Accessed on: Mar. 30, 2023.

Walther, B.D.; Thorrold, S.R. 2006. Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish. Marine Ecology Progress Series, 311: 125-130. https://doi.org/10.3354/meps311125

Wei, G.; Ma, J.; Liu, Y.; Xie, L.; Lu, W.; Deng, W.; Ren, Z.; Zeng, T.; Yang, Y. 2013. Seasonal changes in the radiogenic and stable strontium isotopic composition of Xijiang River water: Implications for chemical weathering. Chemical Geology, 343: 67-75. https://doi.org/10.1016/j.chemgeo.2013.02.004

Downloads

Published

2023-12-28

Issue

Section

Scientific Article

Most read articles by the same author(s)

1 2 3 > >>