Cage fish farm causes the homogenization of wild fish diets of different sizes

Authors

  • Bruna Caroline Kotz Kliemann Universidade Estadual Paulista, Faculdade de Engenharia de Ilha Solteira, Programa de Pós-Graduação em Ciência e Tecnologia Animal – Ilha Solteira (SP), Brazil | Universidade Estadual Paulista, Instituto de Biociências, Programa de Pós-Graduação em Ciências Biológicas – Botucatu (SP), Brazil. https://orcid.org/0000-0002-7972-2043
  • José Daniel Soler Garves Universidade Estadual Paulista, Instituto de Biociências, Programa de Pós-Graduação em Ciências Biológicas – Botucatu (SP), Brazil https://orcid.org/0000-0003-4549-3630
  • Cibele Diogo Pagliarini Universidade Estadual Paulista, Instituto de Biociências, Programa de Pós-Graduação em Ciências Biológicas – Botucatu (SP), Brazil https://orcid.org/0000-0002-1978-9481
  • Rosilene Luciana Delariva Universidade Estadual do Oeste do Paraná, Centro de Ciências Biológicas e da Saúde – Cascavel (PR), Brazil. https://orcid.org/0000-0002-6489-2437
  • Rosicleire Verissimo Silveira Universidade Estadual Paulista, Faculdade de Engenharia de Ilha Solteira, Programa de Pós-Graduação em Ciência e Tecnologia Animal – Ilha Solteira (SP), Brazil | Universidade Estadual Paulista, Instituto de Biociências, Programa de Pós-Graduação em Ciências Biológicas – Botucatu (SP), Brazil | Universidade Estadual Paulista. Faculdade de Engenharia de Ilha Solteira – Ilha Solteira (SP), Brazil. https://orcid.org/0000-0002-8298-5004
  • Igor Paiva Ramos Universidade Estadual Paulista, Instituto de Biociências, Programa de Pós-Graduação em Ciências Biológicas – Botucatu (SP), Brazil | Universidade Estadual Paulista. Faculdade de Engenharia de Ilha Solteira – Ilha Solteira (SP), Brazil. https://orcid.org/0000-0003-4525-6491

DOI:

https://doi.org/10.20950/1678-2305/bip.2024.50.e834

Keywords:

Aquaculture, Anthropic influence, Freshwater, Diet, Geophagus sveni

Abstract

We evaluated the influences of cage fish farm on the individual diet of Geophagus sveni, a wild species nonnative to the Paraná river basin, and hypothesized that, in areas where there are no cage fish farms (CT), differences in feeding occur between larger and smaller individuals. In addition, in cage fish farm areas (CF), there are no differences in feeding between smaller and larger individuals due to the consumption of pelleted feed. For this, we evaluated the stomach contents of individuals of different body sizes sampled in CT and CF areas. We observed significant differences in diet between larger and smaller individuals only in the CT area, corroborated by positive and negative relationships between food items and standard length. In the CF area, we observed pelleted feed consumption by individuals of different sizes and only positive relationships between food items and standard length. Thus, the cage fish farms interfered with the consumption of natural food resources, promoting a more homogeneous diet among smaller and larger individuals. In this context, because of the importance of trophic segregation for intrapopulation coexistence and population stability, this homogenization can promote an imbalance in population dynamics.

References

Agostinho, A.A.; Thomaz, S.M.; Gomes, L.C. & Baltar, S.L.S.M.A. (2007). Influence of the macrophyte Eichhornia azurea on fish assemblage of the Upper Paraná River floodplain (Brazil). Aquatic Ecology, 41: 611-619. https://doi.org/10.1007/s10452-007-9122-2

Anderson, M.J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26(1): 32- 46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x

Anderson, M.J. (2006). Distance-based tests for homogeneity of multivariate dispersions. Biometrics, 62(1): 245-253. https://doi.org/10.1111/j.1541-0420.2005.00440.x

Baker, M.E. & King, R.S. (2010). A new method for detecting and interpreting biodiversity and ecological community thresholds. Methods Ecology Evolution, 1(1): 25-37. https://doi.org/10.1111/j.2041-210x.2009.00007.x

Baker, M.E.; King, R.S. & Kahle, D. (2020). Threshold Indicator Taxa Analysis 2.4. Available at: https://cran.r-project.org/web/packages/TITAN2/TITAN2.pdf. Accessed on: Apr. 3, 2023.

Baldasso, M.C.; Wolff, L.L.; Neves, M.P. & Delariva, R.L. (2019). Ecomorphological variations and food supply drive trophic relationships in the fish fauna of a pristine neotropical stream. Environmental Biology of Fishes, 102: 783-800. https://doi.org/10.1007/s10641-019-00871-w

Barrett, L.T.; Swearer, S.E. & Dempster, T. (2018). Impacts of marine and freshwater aquaculture on wildlife: a global meta-analysis. Reviews in Aquaculture, 11(4): 1022-1044. https://doi.org/10.1111/raq.12277

Bicudo, C.E.M. & Bicudo, R.M.T. (1970). Algas de águas continentais brasileiras: chave ilustrada para identificação de gêneros. São Paulo: Fundação Brasileira para o Desenvolvimento do Ensino de Ciências.

Brandão, H.; Lange, D.; Blanco, D.R.; Ramos, I.P.; Sousa, J.Q.; Nobile, A.B. & Carvalho, E.D. (2021). Fishfood interaction network around cage fish farming in a neotropical reservoir. Acta Limnologica Brasiliensia, 33: e18. https://doi.org/10.1590/s2179-975x10919

Britton, J.R. (2019). Empirical predictions of the trophic consequences of non-native freshwater fishes: A synthesis of approaches and invasion impacts. Turkish Journal of Fisheries and Aquatic Sciences, 19(6): 529-539. https://doi.org/10.4194/1303-2712-v19_6_09

Brown, J.A. (1985). The adaptive significance of behavioural ontogeny in some centrarchid fishes. Environmental Biology of Fishes, 13: 25-34. https://doi.org/10.1007/BF00004853

Cacho, J.C.; Moura, R.T.S. & Henry-Silva, G.G. (2020). Influence of Nile tilapia (Oreochromis niloticus) fish farming in net cages on the nutrient and particulate matter sedimentation rates in Umari reservoir, Brazilian semi-arid. Aquaculture Reports, 17: 100358. https://doi.org/10.1016/j.aqrep.2020.100358

Carmo, F.J.; Souza, C.G.; Filho, C.I.; Gregório, H.C.S.; Pegolo, P.R.T.; Silveira, J.B.; Silva, N.J.R.; Junior, J.N.S.; Vivan, W.S.O.; Barrozo, D.; Martins, F.R. & Salomon, M.V. (2021). Levantamento das unidades de piscicultura no estado de São Paulo. Campinas: Coordenadoria de Desenvolvimento Rural Sustentável.

Clarke, K.R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18(1): 117-143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

Correa, S.B. & Winemiller, K.O. (2014). Niche partitioning among frugivorous fishes in response to fluctuating resources in the Amazonian floodplain forest. Ecology, 95(1): 210-224. https://doi.org/10.1890/13-0393.1

Cuthbert, R.N.; Wasserman, R.J.; Dalu, T.; Kaiser, H.; Weyl, O.L.F.; Dick, J.T.A.; Sentis, A.; McCoy, M.W. & Alexander, M.E. (2020). Influence of intra- and interspecific variation in predator–prey body size ratios on trophic interaction strengths. Ecology and Evolution, 10(12): 5946-5962. https://doi.org/10.1002/ece3.6332

De La Torre Zavala, A.M.; Arce, E.; Luna-Figueroa, J. & Córdoba-Aguilar, A. (2018). Native fish, Cichlasoma istlanum, hide for longer, move and eat less in the presence of a non-native fish, Amatitlania nigrofasciata. Environmental Biology of Fishes, 10: 1077-1082. https://doi.org/10.1007/s10641-018-0761-z

Frisso, R.M.; Matos, F.T.; Moro, G.V. & Mattos, B.O. (2020). Stocking density of Amazon fish (Colossoma macropomum) farmed in a continental neotropical reservoir with a net cages system. Aquaculure, 529: 735702. https://doi.org/10.1016/j.aquaculture.2020.735702

Garcia, F.; Kimpara, J.M.; Valenti, W.C. & Ambrosio, L.A. (2014). Emergy assessment of tilapia cage farming in a hydroelectric reservoir. Ecological Engineering, 68: 72-79. https://doi.org/10.1016/j.ecoleng.2014.03.076

Gerking, S.D. (1994). Feeding Ecology of Fish. California: Academic Press.

Hammer, Ø.; Harper, D.A.T. & Ryan, P.D. (2001). Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1): 9.

Hellawell, J.M. & Abel, R. (1971). A rapid volumetric method for the analysis of the food of fishes. Journal of Fish Biology, 3(1): 29-37. https://doi.org/10.1111/j.1095-8649.1971.tb05903.x

Hutchinson, G.E. (1961). The paradox of the plankton. American Naturalist, 95(882): 137-145. https://doi.org/10.1086/282171

Hyslop, E.J. (1980). Stomach contents analysis—a review of methods and their application. Journal of Fish Biology, 17(4): 411-429. https://doi.org/10.1111/j.1095-8649.1980.tb02775.x

Instituto Nacional de Pesquisas Espaciais (INPE). Topodata: Banco de dados Geomorfológicos do Brasil. Brazil: INPE; (2022). Available at: http://www.dsr.inpe.br/topodata/acesso.php. Accessed on: Apr. 3, 2023.

Kadry, V.O. & Barreto, R.E. (2010). Environmental enrichment reduces aggression of pearl cichlid, Geophagus brasiliensis, during resident-intruder interactions. Neotropical Ichthyology, 8(2): 329–332. https://doi.org/10.1590/S1679-62252010000200011

Keppeler, F.W.; Lanés, L.E.K.; Rolon, A.S.; Stenert, C.; Lehmann, P.; Reichard, M. & Maltchik, L. (2015). The morphology-diet relationship and its role in the coexistence of two species of annual fishes. Ecology of Freshwater Fish, 24(1): 77-90. https://doi.org/10.1111/eff.12127

Kliemann, B.C.K.; Baldasso, M.C.; Pini, S.F.R.; Makrakis, M.C.; Makrakis, S. & Delariva, R.L. (2019). Assessing the diet and trophic niche breadth of an omnivorous fish (Glanidium ribeiroi) in subtropical lotic environments: intraspecific and ontogenic responses to spatial variations. Marine and Freshwater Research, 70(8): 1116-1118. https://doi.org/10.1071/MF18149

Kliemann, B.C.K.; Delariva, R.L.; Amorim, J.P.A.; Ribeiro, C.S.; Silva, B.; Silveira, R.V. & Ramos, I.P. (2018). Dietary changes and histophysiological responses of a wild fish (Geophagus cf. proximus) under the influence of tilapia cage farm. Fisheries Research, 204: 337-347. https://doi.org/10.1016/j.fishres.2018.03.011

Kliemann, B.C.K.; Delariva, R.L.; Manoel, L.O.; Silva, A.P.S.; Veríssimo-Silveira, R. & Ramos, I.P. (2022). Do cage fish farms promote interference in the trophic niche of wild fish in neotropical reservoir? Fisheries Research, 248: 106198. https://doi.org/10.1016/j.fishres.2021.106198

Kliemann, B.C.K.; Galdioli, E.M.; Bialetzki, A. & Delariva, R.L. (2021). Morphological divergences as drivers of diet segregation between two sympatric species of Serrapinnus (Characidae: Cheirodontinae) in macrophyte stands in a neotropical floodplain lake. Neotropical Ichthyology, 19(2): 1-20. https://doi.org/10.1590/1982-0224-2020-0139

Kliemann, B.C.K.; Garves, J.D.S; Diogo Pagliarini, C.D; Delariva, R.L.; Veríssimo-Silveira, R. & Paiva Ramos, I. (2024). Supplementary tables. Available at: https://zenodo.org/records/12551974

Leray, M.; Alldredge, A.L.; Yang, J.Y.; Meyer, C.P.; Holbrook, S.J.; Schmitt, R.J.; Knowlton, N. & Brooks, A.J. (2019). Dietary partitioning promotes the coexistence of planktivorous species on coral reefs. Molecular Ecology, 28(10): 2694-2710. https://doi.org/10.1111/mec.15090

Lukoschek, V. & McCormick, M.I. (2001). Ontogeny of diet changes in a tropical benthic carnivorous fish, Parupeneus barberinus (Mullidae): relationship between foraging behaviour, habitat use, jaw size, and prey selection. Marine Biology, 138: 1099-1113. https://doi.org/10.1007/s002270000530

Manna, L.R.; Villéger, S.; Rezende, C.F. & Mazzoni, R. (2019). High intraspecific variability in morphology and diet in tropical stream fish communities. Ecology of Freshwater Fish, 28(1): 41-52. https://doi.org/10.1111/eff.12425

Mazzoni, R. & Da Costa, L.D.S. (2007). Feeding ecology of stream-dwelling fishes from a coastal stream in the southeast of Brazil. Brazilian Archives of Biology and Technology, 50(4): 627-635. https://doi.org/10.1590/s1516-89132007000400008

Meschiatti, A.J. & Arcifa, M.S. (2002). Early life stages of fish and the relationships with zooplankton in a tropical Brazilian reservoir: Lake Monte Alegre. Brazilian Journal of Biology, 62(1): 41-50. https://doi.org/10.1590/S1519-69842002000100006

Mittelbach, G.G. & Persson, L. (1998). The ontogeny of piscivory and its ecological consequences. Canadian Journal of Fisheries and Aquatic Sciences, 55(6): 1454-1465. https://doi.org/10.1139/f98-041

Montanini, S.; Stagioni. M.; Benni. E. & Vallisneri, M. (2017). Feeding strategy and ontogenetic changes in diet of gurnards (Teleostea: Scorpaeniformes: Triglidae) from the Adriatic Sea. The European Zoological Journal, 84(1): 356-367. https://doi.org/10.1080/24750263.2017.1335357

Moretto, E.M.; Marciano, F.T.; Velludo, M.R.; Fenerich- Verani, N.; Espíndola, E.L.G. & Rocha, O. (2008). The recent occurrence, establishment and potential impact of Geophagus proximus (Cichlidae: Perciformes) in the Tietê River reservoirs: An Amazonian fish species introduced in the Paraná Basin (Brazil). Biodiversity and Conservation, 17: 3013-3025. https://doi.org/10.1007/s10531-008-9413-5

Mugnai, R.; Nessimian, J.L. & Baptista, D.F. (2010). Manual de identificação de macroinvertebrados aquáticos do Estado do Rio de Janeiro. Rio de Janeiro: Technical Books.

Neves, M.P.; Delariva, R.L.; Guimarães, A.T.B. & Sanches, P.V. (2015). Carnivory during ontogeny of the Plagioscion squamosissimus: a successful non-native fish in a lentic environment of the Upper Paraná River Basin. PloS One, 10(11): e0141651. https://doi.org/10.1371/journal.pone.0141651

Nobile, A.B.; Cunico, A.M.; Vitule, J.R.S.; Queiroz, J.; Vidotto-Magnoni, A.P.; Garcia, D.A.Z.; Orsi, M.L.; Lima, F.P.; Acosta, A.A.; da Silva, R.J.; do Prado, F.D.; Porto-Foresti, F.; Brandão, H.; Foresti, F.; Oliveira, C. & Ramos, I.P. (2020). Status and recommendations for sustainable freshwater aquaculture in Brazil. Reviews in Aquaculture, 12(3): 1495-1517. https://doi.org/10.1111/raq.12393

Nobile, A.B.; Zanatta, A.S.; Brandão, H.; Zica, E.O.P.; Lima, F.P.; Freitas-Souza, D.; Carvalho, E.D.; Ilva, R.J. & Ramos, I.P. (2018). Cage fish farm act as a source of changes in the fish community of a Neotropical reservoir. Aquaculture, 495: 780-785. https://doi.org/10.1016/j.aquaculture.2018.06.053

Nunn, A.D.; Tewson, L.H. & Cowx, I.G. (2012). The foraging ecology of larval and juvenile fishes. Reviews in Fish Biology and Fisheries, 22: 377-408. https://doi.org/10.1007/s11160-011-9240-8

Oksanen, J.F.; Blanchet, G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Szoecs, E. & Wagner, H. (2020). Vegan: Community Ecology Package. Available at: https://CRAN.R-project.org/package=vegan. Accessed on: Apr. 3, 2023.

Oliveira, I.A.; Argolo, L.A.; Bitencourt, J.D.A.; Diniz, D.; Vicari, M.R. & Affonso, P.R.A.D.M. (2016). Cryptic Chromosomal Diversity in the Complex “Geophagus” brasiliensis (Perciformes, Cichlidae). Zebrafish, 13(1): 33- 44. https://doi.org/10.1089/zeb.2015.1169

Orlandi-Neto, A.; Amorim, R.V.; Delariva, R.L.; Camargo, A.F.M.; Veríssimo-Silveira, R. & Ramos, I.P. (2022). Struture and composition of ichthyofauna associated with cage fish farming and compared to a control area after severe drought in a Neotropical reservoir. Neotropical Ichthyology, 20(3): e210141. https://doi.org/10.1590/1982-0224-2021-0141

Ornelas-García, C.P.; Córdova-Tapia, F.; Zambrano, L.; Bermúdez-González, M.P.; Mercado-Silva, N.; Mendoza- Garfias, B. & Bautista A. (2018). Trophic specialization and morphological divergence between two sympatric species in Lake Catemaco, Mexico. Ecology and Evolution, 8(10): 4867-4875. https://doi.org/10.1002/ece3.4042

Ota, R.R.; Deprá, G.C.; Graça, W.J. & Pavanelli, C.S. (2018). Peixes da planície de inundação do alto rio Paraná e áreas adjacentes: revised, annotated and updated. Neotropical Ichthyology, 16(2): 1-111. https://doi.org/10.1590/1982-0224-20170094

Ramos, I.P.; Brandão, H.; Zanatta, A.S.; Zica, É.D.O.P.; da Silva, R.J.; de Rezende-Ayroza, D.M.M. & Carvalho, E.D. (2013). Interference of cage fish farm on diet, condition factor and numeric abundance on wild fish in a Neotropical reservoir. Aquaculture, 414-415: 56-62. https://doi.org/10.1016/j.aquaculture.2013.07.013

Ramos, J.K.K.; do Bonfim, V.C.; Kliemann, B.C.K.; Garves, J.D.S.; Delariva, R.L. & Ramos, I.P. (2022). Do cage fish farms interfere with the food aspects of the wild species Metynnis lippincottianus (Characiformes, Serrasalmidae)?. Boletim do Instituto de Pesca, 48: e722. doi.org/10.20950/1678-2305/bip.2022.48.e722

RStudio Team. (2022). RStudio: Integrated Development Environment for R. Boston: RStudio. Available at: http://www.rstudio.com. Accessed on: Apr. 3, 2023.

Sánchez-Hernández, J. & Cobo, F. (2018). Modelling the factors influencing ontogenetic dietary shifts in streamdwelling brown trout (Salmo trutta). Canadian Journal of Fisheries and Aquatic Sciences, 75(4): 590-599. https://doi.org/10.1139/cjfas-2017-0021

Sánchez-Hernández, J.; Nunn, A.D.; Adams, C.E. & Amundsen, P.A. (2019). Causes and consequences of ontogenetic dietary shifts: a global synthesis using fish models. Biological Reviews, 94(2): 539-554. https://doi.org/10.1111/brv.12468

Schoener, T.W. (1974). Resource partitioning in ecological communities. Science, 185(4145): 27-39. https://doi.org/10.1126/science.185.4145.27

Silva, J.C.; Gubiani, É.A.; Neves, M.P. & Delariva, R.L. (2017). Coexisting small fish species in lotic neotropical environments: evidence of trophic niche differentiation. Aquatic Ecology, 51: 275-288. https://doi.org/10.1007/s10452-017-9616-5

Souza, C.R.; de Mello Affonso, P.R.A.; Bitencourt, J.A.; Sampaio, I. & Carneiro, P.L.S. (2018). Species validation and cryptic diversity in the Geophagus brasiliensis Quoy & Gaimard, 1824 complex (Teleostei, Cichlidae) from Brazilian coastal basins as revealed by DNA analyses. Hydrobiologia, 809: 309-321. https://doi.org/10.1007/s10750-017-3482-y

Tičina, V.; Katavić, I. & Grubišić, L. (2020). Marine aquaculture impacts on marine biota in oligotrophic environments of the Mediterranean sea–a review. Frontiers in Marine Science, 7: 217. https://doi.org/10.3389/fmars.2020.00217

Downloads

Published

2024-08-13

Issue

Section

Scientific Article

Most read articles by the same author(s)