Larviculture of Nile tilapia (Oreochromis niloticus) in biofloc and clear water systems: masculinization with 17 α-methyltestosterone
DOI:
https://doi.org/10.20950/1678-2305/bip.2024.50.e872Keywords:
Closed systems, Fish farming, Zootechnical performance, Histology, Water qualityAbstract
We evaluated the use of the hormone 17α-methyltestosterone during the larviculture of Nile tilapia in biofloc and clear water systems. A completely randomized experimental design was adopted with four treatments and four replications: biofloc system without dietary hormone incorporation (BFT-D); biofloc system with dietary hormone incorporation (BFT-H); clear water without hormone incorporation in the diet (CLW-D); and clear water with hormone incorporation in the diet (CLW-H). The 28-day larviculture of Nile tilapia was carried out using 16 tanks with capacity of 15 L. The evaluations included water parameters, growth, survival, and gonad histology. The biofloc system displayed higher values for alkalinity, total suspended solids, settling solids, and turbidity compared to the clear water system (p < 0.05). Nevertheless, no difference (p > 0.05) was observed for in final weight, weight gain, feed conversion factor, survival, and growth rate between treatments. Then, tilapia post-larvae can be successfully reared in both biofloc and clear water systems without any negative impact on their zootechnical performance. Nonetheless, such results showed that tilapia can be reared in alternative systems, which can increase the production of this species.
References
Ahmad, I.; Babitha Rani, A.M.; Verma, A.K.; Maqsood, M. 2017. Biofloc Technology: An Emerging Avenue in Aquatic Animal Healthcare and Nutrition. Aquaculture International, 25: 1215. https://doi.org/10.1007/s10499-016-0108-8
Arai, K.; Fujimoto, T. 2018. Chromosome Manipulation Techniques and Applications to Aquaculture. In: Wang, H.-P.; Piferrer, F.; Chen, S.-L.; Shen, Z.-G. (Eds.). Sex Control in Aquaculture (pp. 137–162). Chichester: John Wiley & Sons. https://doi.org/10.1002/9781119127291.ch6
Asad, F.; Ahmed, I.; Saleem, M.; Iqbal, T. 2010. Hormonal masculinization and growth performance in nile tilapia (Oreochromis niloticus) by androgen administration at different dietary protein levels. International Journal of Agriculture and Biology, 12(6): 939-943.
Avnimelech, Y. 1999. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176(3-4): 227-235. https://doi.org/10.1016/S0044-8486(99)00085-X
Avnimelech, Y. 2007. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264(1-4): 140-147. https://doi.org/10.1016/j.aquaculture.2006.11.025
Avnimelech, Y. 2012. Biofloc technology: A Practical Guide Book. 2ª ed. Baton Rouge: World Aquaculture Society. https://doi.org/10.13140/2.1.4575.0402
Azim, M.E.; Little, D.C. 2008. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283(1-4): 29-35. https://doi.org/10.1016/j.aquaculture.2008.06.036
Baroiller, J.F.; D’Cotta, H. 2018. Sex Control in Tilapias. In: Wang, H.-P.; Piferrer, F.; Chen, S.-L.; Shen, Z.-G. (Eds.). Sex Control in Aquaculture (pp. 191-234). Wiley. https://doi.org/10.1002/9781119127291.ch9
Bombardelli, R.A.; Sanches, E.A.; Pinto, D.F.H.; Marcos, R.M.; Barbero, L. 2007. Idade de maior sensibilidade de tilápiasdo-nilo aos tratamentos de masculinização por banhos de imersão. Revista Brasileira de Zootecnia, 36(1): 1-6. https://doi.org/10.1590/S1516-35982007000100001
Carvalho, E.D.; Foresti, F. 1996. Reversão de sexo em tilápia-do-Nilo Oreochromis niloticus induzida por 17-α-metiltestosterona: proporção de sexo e histologia das gônadas. Brazilian Journal of Biology, 56: 249-262.
Chen, J.; Fan, Z.; Tan, D.; Jiang, D.; Wang, D. 2018. A Review of Genetic Advances Related to Sex Control and Manipulation in Tilapia. Journal of the World Aquaculture Society, 49(2): 277-291. https://doi.org/10.1111/JWAS.12479
Costa e Silva, R.Z.; Alvarenga, É.R.; Matta, S.V.; Alves, G.F. de O.; Manduca, L.G.; Silva, M.A.; Yoshinaga, T.T.; Fernandes, A.F.A.; Turra, E.M. 2022. Masculinization protocol for Nile tilapia (O. niloticus) in Biofloc technology using 17-α-methyltestosterone in the diet. Aquaculture, 547: 737470. https://doi.org/10.1016/j.aquaculture.2021.737470
Cowey, C.B. 1985. Nutrient requirements of warmwater fishes and shellfishes. Aquaculture, 44(3): 257-258. https://doi.org/10.1016/0044-8486(85)90251-0
Crab, R.; Defoirdt, T.; Bossier, P.; Verstraete, W. 2012. Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture, 356-357: 351-356. https://doi.org/10.1016/j.aquaculture.2012.04.046
Crab, R.; Kochva, M.; Verstraete, W.; Avnimelech, Y. 2009. Bioflocs technology application in over-wintering of tilapia. Aquacultural Engineering, 40(3): 105-112. https://doi.org/10.1016/j.aquaeng.2008.12.004
D’Cotta, H.; Fostier, A.; Guiguen, Y.; Govoroun, M.; Baroiller, J.F. 2001. Aromatase plays a key role during normal and temperature-induced sex differentiation of tilapia Oreochromis niloticus. Molecular Reproduction and Development, 59(3): 265-276. https://doi.org/10.1002/mrd.1031
De Schryver, P.; Crab, R.; Defoirdt, T.; Boon, N.; Verstraete, W. 2008. The basics of bio-flocs technology: The added value for aquaculture. Aquaculture, 277(3-4): 125-137. https://doi.org/10.1016/j.aquaculture.2008.02.019
Eaton, A.; Clesceri, L.; Greenberg, A.; Franson, M. 1995. Standard methods for the examination of water and wastewater. Washington, D.C.: American Public Health Association.
Emerenciano, M.G.C.; Martínez-Córdova, L.R.; Martínez- Porchas, M.; Miranda-Baeza, A. 2017. Biofloc Technology (BFT): A Tool for Water Quality Management in Aquaculture. In: Tutu, H. (ed.). Water Quality. Johannesburg: IntechOpen. https://doi.org/10.5772/66416
Food and Agriculture Organization (FAO). 2022. The State of World Fisheries and Aquaculture 2022: Towards Blue Transformation. Rome: FAO. https://doi.org/10.4060/cc0461en
Furuya, W.; Barros, M. 2012. Exigências nutricionais e alimentação da tilápia. In: Fracalossi, D.M.; Cyrino, J.E.P. (Eds.). Nutriaqua: Nutrição e Alimentação de Espécies de Interesse para a aquicultura brasileira (pp. 255-268). Florianópolis: Sociedade Brasileira de Aquicultura e Biologia Aquática.
Jensi, A.; Karal Marx, K.; Rajkumar, M.; Jeya Shakila, R.; Chidambaram, P. 2016. Effect of 17 α-methyl testosterone on sex reversal and growth of Nile tilapia (Oreochromis niloticus L, 1758). Ecology, Environment and Conservation, 22(3): 1487-1492.
Junqueira, L.C.U.; Junqueira, L.M.S. 1983. Técnicas básicas de citologia e histologia. São Paulo: Santos.
Khanjani, M.H.; Sharifinia, M.; Emerenciano, M.G.C. 2024. Biofloc Technology (BFT) in Aquaculture: What Goes Right, What Goes Wrong? A Scientific-Based Snapshot. Aquaculture Nutrition, 2024: 7496572. https://doi.org/10.1155/2024/7496572
Khanjani, M.H.; Sharifinia, M.; Hajirezaee, S. 2022. Recent progress towards the application of biofloc technology for tilapia farming. Aquaculture, 552: 738021. https://doi.org/10.1016/j.aquaculture.2022.738021
Khanjani, M.H.; Sharifinia, M.; Hajirezaee, S. 2023. Biofloc: A sustainable alternative for improving the production of farmed cyprinid species. Aquaculture Reports, 33: 101748. https://doi.org/10.1016/j.aqrep.2023.101748
Khater, E.S.G.; Ali, S.A.; Mohamed, W.E. 2017. Effect of Water Temperature on Masculinization and Growth of Nile Tilapia Fish. Journal of Aquaculture Research & Development, 8:9. https://doi.org/10.4172/2155-9546.1000507
Li, X.Y.; Mei, J.; Ge, C.T.; Liu, X.L.; Gui, J.F. 2022. Sex determination mechanisms and sex control approaches in aquaculture animals. Science China Life Sciences, 65(6): 1091-1122. https://doi.org/10.1007/s11427-021-2075-x
Makino, L.C.; Nakaghi, L.S.O.; do Carmo Faria Paes, M.; Malheiros, E.B.; Dias-Koberstein, T.C.R. 2009. Efetividade de métodos de identificação sexual em tilápias do nilo (Oreochromis niloticus) revertidas sexualmente com hormônio em ração com diferentes granulometrias. Bioscience Journal, 25(2): 112-121.
Mendes, A.I.; Carvalho, M. 2016. Caracterização da piscicultura em tanques-rede no município de Rubinéia-SP: um estudo de caso. Revista do Agronegócio, 5(1): 16-33.
Mlalila, N.; Mahika, C.; Kalombo, L.; Swai, H.; Hilonga, A. 2015. Human food safety and environmental hazards associated with the use of methyltestosterone and other steroids in production of all-male tilapia. Environmental Science and Pollution Research, 22(7): 4922-4931. https://doi.org/10.1007/s11356-015-4133-3
Nakamura, M. 2010. The mechanism of sex determination in vertebrates-are sex steroids the key-factor? Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 313A(7): 381-398. https://doi.org/10.1002/jez.616
PEIXE BR. 2023. Anuário 2023 Peixe BR de Piscicultura. São Paulo: Associação Brasileira de Piscicultura.
Pérez-Fuentes, J.A.; Hernández-Vergara, M.P.; Pérez-Rostro, C.I.; Fogel, I. 2016. C:N ratios affect nitrogen removal and production of Nile tilapia Oreochromis niloticus raised in a biofloc system under high density cultivation. Aquaculture, 452: 247-251. https://doi.org/10.1016/j.aquaculture.2015.11.010
Pezzato, L.E.; De Miranda, E.C.; Barros, M.M.; Pinto, L.G.Q.; Furuya, W.M.; Pezzato, A.C. 2002. Digestibilidade aparente de ingredientes pela tilápia do Nilo (Oreochromis niloticus). Revista Brasileira de Zootecnia, 31(4): 1595-1604. https://doi.org/10.1590/s1516-35982002000700001
Popma, T.; Green, B.W. 1990. Reversão sexual de tilápias em tanques de terra. Florida: University Aurburn.
Popma, T.J.; Lovshin, L.L. 1995. Worldwide Prospects for Commercial Production of Tilapia. Auburn: International Center for Aquaculture and Aquatic Environments.
Schofield, P.J.; Peterson, M.S.; Lowe, M.R.; Brown-Peterson, N.J.; Slack, W.T. 2011. Survival, growth and reproduction of nonindigenous Nile tilapia, Oreochromis niloticus (Linnaeus 1758). I. Physiological capabilities in various temperatures and salinities. Marine and Freshwater Research, 62(5): 439-449. https://doi.org/10.1071/MF10207
Solomon, S.G.; Okomoda, V.T. 2012. Effects of photoperiod on the haematological parameters of Clarias gariepinus fingerlings reared in water recirculatory system. Journal of Stress Physiology & Biochemistry, 8(3): 247-253.
Thanasupsin, S.; Chheang, L.; Math, C. 2021. Ecological risk of 17α-methyltestosterone contaminated water discharged from a full water recirculating earthen masculinization pond. Human and Ecological Risk Assessment, 27(6): 1696-1714. https://doi.org/10.1080/10807039.2021.1871845
Valentin, F.N.; Nascimento, N.F.; Silva, R.C.; Tsuji, E.A.; Carmo Faria Paes, M.; Dias Koberstein, T.C.R.; Nakaghi, L.S.O. 2015. Maternal age influences on reproductive rates in Nile tilapia (Oreochromis niloticus). Revista Brasileira de Zootecnia, 44(4): 161-163. https://doi.org/10.1590/S180692902015000400005
Wang, H.P.; Shen, Z.G. 2018. Sex Control in Aquaculture: Concept to Practice. wiley. In: Wang, H.-P.; Piferrer, F.; Chen, S.-L.; Shen, Z.-G. (Eds.). Sex Control in Aquaculture (pp. 1-34). Oxford: John Wiley & Sons. https://doi.org/10.1002/9781119127291.ch1
Widanarni; Ekasari, J.; Maryam, S.I.T.I. 2012. Evaluation of Biofloc Technology Application on Water Quality and Production Performance of Red Tilapia Oreochromis sp. Cultured at Different Stocking Densities. HAYATI Journal of Biosciences, 19(2): 73-80. https://doi.org/10.4308/hjb.19.2.73
Zanoni, M.A.; Leal, T.V.; Caetano Filho, M.; De Oliveira, C.A.L.; Ribeiro, R.P. 2013. Inversão sexual de alevinos de tilápias do Nilo (Oreochromis niloticus) variedade Supreme, submetidos a diferentes temperaturas durante fase de diferenciação sexual. Semina: Ciências Agrárias, 34(1): 455-466. https://doi.org/10.5433/1679-0359.2013v34n1p455
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Ugo Lima Silva, Plinio Gomes Júnior, Dario Rocha Falcon, Nivaldo Nascimento, Renata Akemi Shinozaki-Mendes
This work is licensed under a Creative Commons Attribution 4.0 International License.