Fração solúvel de hidrolisado proteico de sardinha na alimentação do jundiá

Autores

  • André VENTURIN Centro de Educação Superior do Oeste, Universidade do Estado de Santa Catarina, UDESC
  • André Fernando Nascimento GONÇALVES Laboratório de Piscicultura, Universidade do Estado de Santa Catarina, UDESC
  • Nandara Soares de OLIVEIRA Laboratório de Piscicultura, Universidade do Estado de Santa Catarina, UDESC
  • Everton SKORONSKI Departamento de Engenharia Ambiental, Universidade do Estado de Santa Catarina, UDESC http://orcid.org/0000-0002-8554-8272
  • Marcos Luiz PESSATTI Programa de Pós - Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itaja-­­, UNIVALI http://orcid.org/0000-0001-5904-011X
  • Thiago El Hadi Perez FABREGAT Laboratório de Piscicultura, Universidade do Estado de Santa Catarina, UDESC http://orcid.org/0000-0003-3718-5224

DOI:

https://doi.org/10.20950/1678-2305.2016v42n4p878

Palavras-chave:

Qualidade da água, jundiá, lixiviação, amônia, Rhamdia quelen, Sardinella brasiliensis

Resumo

O objetivo deste trabalho foi avaliar o efeito da inclusão da fração solúvel do hidrolisado proteico de sardinha sobre a estabilidade das dietas e a excreção de amônia de juvenis de jundiá. Foram elaboradas sete dietas experimentais com as frações solúveis dos hidrolisados de músculo e ví­­sceras de sardinha. A determinação da estabilidade do pellet na água foi medida em intervalos de tempo diferentes (5 min, 10 min, 20 min, 30 min, 1 h e 1,5 h). A determinação de amônia total foi realizada a cada cinco horas. Como resultado do teste de estabilidade foi detectado diferença significativa somente no perí­­odo de 5 minutos, onde a dieta contendo 20% de hidrolisado solúvel de musculo teve maior taxa de lixiviação em comparação com a dieta controle. A partir de 10 horas de observação, a concentração de amônia foi maior no controle em relação aos outros tratamentos. O hidrolisado proteico de resí­­duo de sardinha tem grande potencial para ser utilizado nas rações do jundiá, melhorando a eficiência ambiental das dietas. A inclusão de até 10% da fração solúvel de hidrolisados de músculo e de ví­­sceras de sardinha não afeta a estabilidade das dietas, além de diminuir a excreção de amônia.

Referências

ADLER-NISSEN, J. 1986 Enzymic hydrolysis of food proteins. Elsevier Applied Science. Barking: Elsevier Applied Science, p.427.

ALI, S. A.; GOPAL, C.; RAMANA, J.V.; SAMPOORNAM, B.; VASU, C.A.; VAITHEESWARAN, T.; SELVAKUMAR, P. 2010 Evaluation of selected binders in a ring-die pellet mill for processing shrimp feed pellets. Indian Journal of Fisheries, 57(1): 103-106.

AKSNES, A.; HOPE, B.; Jí­–NSSON, E.; BJí­–RNSSON, B.T.; ALBREKTSEN, S. 2006 Size-fractionated fish hydrolysate as feed ingredient for rainbow trout (Oncorhynchus mykiss) fed high plant protein diets. I:Growth, growth regulation and feed utilization. Aquaculture, 261: 305í 317.

APHA (AMERICAN PUBLIC HEALTH ASSOCIATION), AMERICAN WATER WORKS ASSOCIATION, WATER POLLUTION CONTROL FEDERATION, 2005. Standard Methods for the Examination of Water and Wastewater. Phenate Method 4500 í NH3 F. 21st ed., New York. 4-114.

BERGE, G.M. and STOREBAKKEN, T. 1996 Fish protein hydrolyzate in starter diets for Atlantic salmon (Salmo salar) fry. Aquaculture: 205-212.

BEVERIDGE, M.C.M. and PHILLIPS, M.J. 1993 Environmental impact of tropical inland aquaculture. In: PULLIN, R.S.V., ROSENTHAL, H., MACLEAN, J.L. (Eds.) Environment and aquaculture in developing countries. Metro Manila, Philippines: International Center for Living Aquatic Resources Management, pp.213-236.

BRETT, J.R. 1971 Satiation time, appetite and maximum food intake of sockeye salmon (Oncorhynchus nerka). Journal of the Fisheries Research Board of Canada, 28, pp. 409-415.

BUI, H.T.D.; KHOSRAVI, S.; FOURNIER, V.; HERAULT, M.; LEE, K.J. 2014 Growth performance, feed utilization, innate immunity, digestibility and disease resistance of juvenile red seabream (Pagrus major) fed diets supplemented with protein hydrolysates. Aquaculture, 418-419: 11-16.

BUREAU, D. P.; KAUSHIK, S. J.; CHO, C.Y. 2002 Bioenergetics. In Fish Nutrition. J. E. Halver and R. W. Hardy, ed. Academic Press, San Diego, CA, pp 1-53.

CHAKRABORTY, S.C. and CHAKRABORTY, S. 1998 Effects of dietary protein level on excretion of ammonia in Indian major carp, Labeo rohita, fingerlings. Aquaculture Nutrition, 4: 47-51.

CHENG, Z.J.; HARDY, R.W.; USRY, J.L. 2003 Plant protein ingredients with lysine supplementation reduce dietary protein level in rainbow trout (Oncorhynchus mykiss) diets, and reduce ammonia nitrogen and soluble phosphorus excretion. Aquaculture, 218: 553-565.

COSTA-BONFIM, C.N.; SILVA, V.A.; BEZERRA, R.S.; DRUZIAN, J.I.; CAVALLI, R. 2016 Growth, feed efficiency and body composition of juvenile cobia (Rachycentron cadadum Linnaeus, 1766) fed increasing dietary levels of shrimp protein hydrolysate. Aquaculture Research, early view.

ELLIOT, J.M. 1976 Energy losses in the waste products of brown trout (Salmo trutta L.). Journal of Animal Ecology, 45:561-580.

ESPE, M.; SVEIER, H.; Hí­ËœGí­ËœY, I.; LIED, E. 1999 Nutrient absorption and growth of Atlantic salmon (Salmo salar L.) fed fish protein concentrate. Aquaculture, 174:119í 137.

EVANS, D.H.; CLAIBORNE, J.B.; CURRIE, S. 2013 The physiology of fishes (4th ed). Boca Raton:CRC Press. 491 p.

FANG, L.; BAI, X.L.; LIANG, X.F.; HE, S.; GUO, X.Z.; LI, L.L.B.; SHEN, D.; TAO, Y. 2015 Ammonia nitrogen excretion in mandarin fish (Siniperca chatsi) and grass carp (Ctenopharyngodon idellus) fed practical diets: the effects of water temperature. Aquaculture Research, early view.
FISHBASE (no date, on line) Sardinella brasiliensis (Steindachner, 1879). Disponí­­vel em: http://www.fishbase.org/summary/1505# (accessed 15.09.2016).

FAO (FOOD AND AGRICULTURE ORGANIZATION) 2015 Sardinella brasiliensis (Steindachner, 1879). Fisheries and Aquaculture Department. http://www.fao.org/fishery/species/2090/en (accessed 16.04.2016).

GÉLINEAU, A; MÉDALE, F; BOUJARD, T. 1998 Effect of feeding time on postprandial nitrogen excretion and energy expenditure in rainbow trout. Journal of Fish Biology, 52: 655í 664.

GOOSEN, N.J.; WET, L.F.; Gí­–RGENS, J.F. 2014 The effects of protein hydrolysates on the immnunity and growth of the abalone Haliotis midae. Aquaculture, 428-429: 243-248.

HASHIM, R. and SAAT, N.A.M. 1992. The utilization of seaweed meals as binding agents in pelleted feeds for snakehead (Channa striatus) fry and their effects on growth. Aquaculture, 108: 288-308.

HEVROY, E. M.; ESPE, M.; WAAGBO, R. 2005 Nutrient utilization in Atlantic salmon (Salmo salar L.) fed increased levels of fish protein hydrolysate during a period of fast growth. Aquaculture Nutrition, 11: 301í 313.

HORWITZ, W. 2000 Official Methods of Analysis of the Association of Official Analytical Chemists. Maryland: Gaithersburg, p.2200.

ADLER-NISSEN, J. 1986 Enzimic hydrolysis of food proteins. Elsevier Applied Science. Barking: Elsevier Applied Science, p.427.

ISMIí­"˜O-ORBE, R.A.; ARAí­Å¡JO-LIMA, C.A.R.M.; GOMES, L.C. 2003 Ammonia excretion by tambaqui (Colossoma macropomum) related to water temperature and fish mass. Pesquisa Agropecuaria Brasileira, 38: 1243-1247.

KHALED, H.B. and KTARI, N. 2014 Composition, functional properties and in vitro antioxidant activity of protein hydrolysates prepared from sardinelle (Sardinella aurita) muscle. Journal Food Science Technology, 51: 622-623.

KNAUER, J.; BRITZ, P.J.; HECHT, T. 1993 The effect of seven binding agents on 24-hour water stability of an artificial weaning diet for the South African abalone, Haliotis midae (Haliotidae, Gastropoda). Aquaculture, 115: 327-334.

LOVELL, R.T. 1989 Nutrition and feeding of fish. New York: Van Nostrand Reinhold, 260p.

LOWRY, O.H.; ROSENBROUGH, N.J.; FARR, A.L.; RANDALL, R.J. 1951 Protein measurement with the folin phenol reagent. Journal Biology Chemical, 193: 265í 275.

MELO, J.F.B.; LUNDSTEDT, L.M.; METÓN, I.; BAAANANTE, I.V.; MORAES, G. 2006 Effects of dietary levels of protein on nitrogenous metabolism of Rhamdia quelen (Teleostei: Pimelodidae). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Prhysiology, 145, 181-187.

MEYER, G. and FRACALOSSI, D.M. 2004 Protein requirement of jundia fingerlings, Rhamdia quelen, at two dietary energy concentrations. Aquaculture, 240: 331-343.

MCGOOGAN, B.B. and GATLIN III, D.M. 1999. Dietary manipulations affecting growth and nitrogenous waste production of red drum,Sciaenops ocellatus. I Effects of dietary protein and energy levels. Aquaculture, 178: 333-348.

NIELSEN, P.M.; PETERSEN, D.; DAMBMANN, C. 2001 Improved Method for Determining Food Protein Degree of Hydrolysis. Journal of Food Science, 66(5): 642-646.

OLIVA-TELES, A.; CERQUEIRA, A. L.; GONí­"¡ALVES, P. 1999 The utilization of diets containing high levels of fish protein hydrolysate by turbot (Scophthalmus maximus) juveniles. Aquaculture, 179: 195-201.

PALANISWAMY, R. and ALI, S.A. 1991 The impact of particle size of ingredients in compounded diets on pellet stability and performance in Penaeus indicus H. Milne Edwards. Journal of Aquaculture in the Tropics, 6: 119-127.

RADí­Å“NZ-NETO, J. and BORBA, M.R. 2013 Exigências nutricionais e alimentação do jundiá. In: FRACALOSSI, D. M.; CYRINO, J. E. P. (Eds). Nutriaqua: Nutrição e alimentação de espécies de interesse para a aquicultura brasileira. Florianópolis: Sociedade Brasileira de Aquicultura e Biologia Aquática, pp. 241-254.

REFSTIE, S.; OLLI, J.J.; STANDAL, H. 2004 Feed intake, growth, and protein utilization by postsmolt Atlantic salmon (Salmo salar) in response to graded levels of fish protein hydrolysate in the diet. Aquaculture, 239: 331í 349.

RYAN, J.T.; ROSS, R.P.; BOLTON, D.; FITZGERALD, G.F.; STANTON, C. 2011 Bioactive peptides from muscle sources: meat and fish. Nutrients, 3: 765-791.

SAHI, M.; BESSONART, M.; CHEDIAK, G.; BELLAGAMBA, M.; CARNEVIA, D. 2004 Growth, feed utilization and body composition of black catfish, Rhamdia quelen, fry fed diets containing different protein and energy levels. Aquaculture, 231: 435-444.

SINGH, R.P. and SRIVASTAVA, A.K. 1985 Satiation time, gastric evaluation and appetite revival in Heteropneseus fossilis (Bloch) (Soluriformes: Pisces). Aquaculture, 49: 307-313.

WOOD, J.D. 1958 Nitrogen excretion in some teleosts. Canadian Journal of Biochemistry and Physiology, 36: 1237-1242.

ZIEGLER, F.; OLLIVIER, J.M.; CYNOBER, L.; MASINI, J.P.; COULDRAY-LUCAS, C.; LEVY, E.; GIBONDEAU, J. 1990 Efficacy of enteral nitrogen support in surgical patients: small peptides vs. non-degraded proteins. Gut, 31: 1277-1283.

ZHENG, K.; XU, T.; QIAN, C.; WANG, X. 2013 Effect of low molecular weight fish protein hydrolysate on growth performance and IGF-I expression in Japanese flounder (Paralichthys olivaceus) fed high plant protein diets. Aquaculture Nutrition, 20: 372-380

Downloads

Publicado

2016-12-30

Edição

Seção

Artigo cientí­fico

Artigos mais lidos pelo mesmo(s) autor(es)