Cultivo de alevinos de tilápia em sistema de bioflocos sob diferentes relações carbono/nitrogênio

Autores

  • Katherine Patricia ZAPATA Lovera Universidad Nacional Agraria La Molina Departamento Académico de Acuicultura e Industrias Pesqueras
  • Luis Otavio BRITO Universidade Federal Rural de Pernambuco, Departamento de Pesca e Aquicultura
  • Priscilla Celes Maciel de LIMA Universidade Federal Rural de Pernambuco, Departamento de Pesca e Aquicultura http://orcid.org/0000-0002-1063-0853
  • Luis Alejandro VINATEA Arana Universidade Federal de Santa Catarina, Departamento de Aquicultura http://orcid.org/0000-0002-3893-4728
  • Alfredo Olivera GALVEZ Universidade Federal Rural de Pernambuco, Departamento de Pesca e Aquicultura http://orcid.org/0000-0001-5149-2605
  • Jessie Marina Vargas CÁRDENAS Universidad Nacional Agraria La Molina Departamento Académico de Acuicultura e Industrias Pesqueras http://orcid.org/0000-0001-6587-6650

DOI:

https://doi.org/10.20950/1678-2305.2017v43n3p399

Palavras-chave:

peixe, qualidade da água, crescimento, biofloco, proteí­­na

Resumo

Na presente pesquisa avaliou-se o efeito da relação carbono/nitrogênio (C:N) na qualidade da água, produtividade e composição centesimal dos alevinos de Oreochromis niloticus durante 58 dias de cultivo. O desenho experimental consistiu em quatro tratamentos: um sistema convencional (controle) e três sistemas de biofloco (CN10, CN15 e CN20). Foram utilizadas 12 unidades experimentais de 0,04 m3 com 30 peixes (750 peixes m-3) com peso médio individual de 1,55 ± 0,01 g. Verificou-se a existência de interação entre os parí­¢metros de qualidade da água do sistema de biofloco e os parí­¢metros produtivos dos alevinos de tilápia. O tratamento CN10 apresentou baixa produção de sólidos sedimentáveis, 38,61 ± 0,54 mL L-1 (p<0,05), fato esse que contribuiu para o rápido crescimento dos indiví­­duos (21,7 ± 2,18 g), atingindo produtividade final média de 15,50 ± 0,81 kg m-3 (p<0,05). É possí­­vel concluir que o cultivo de alevinos de O. niloticus no sistema biofloco com uma relação C:N de 10 apresentou o melhor rendimento de produção quando comparado aos outros tratamentos (CN15 e CN20).

Referências

AOAC (Association of Analytical Communities) 2005 Official methods of analysis of association the official agricultural chemists. 18ª ed

APHA (American Public Health Association) 2005 Standard methods for the examinations of the water and wastewater. 12ª ed. Washington, EE.UU.560p.

ASADUZZAMAN, M.; RAHMAN, M.M.; AZIM,M.E.; ASHRAFUL ISLAM, M.; WAHAB, M.A.; VERDEGEM, M.C.J.; VERRETH, J.A.J. 2010 Effects of C/N ratio and substrate addition on natural food communities in freshwater prawn monoculture ponds. Aquaculture, 306(1-4): 127í 136.

AVNIMELECH, Y. 2006 Bio-filters: the need for an new comprehensive approach. Aquacultural
engineering, 34(3): 172-178.

AVNIMELECH, Y. 2007 Feeding with microbial flocs by tilapia in minimal discharge bioflocs
technology ponds. Aquaculture, 264(1): 140-147.

AVNIMELECH, Y. 2009 Biofloc technology: A practical guide book. The World Aquaculture Society.
Baton Rouge. 182p.

AZIM, M; LITTLE, D. 2008 The biofloc technology (BFT) in indoor tanks: water quality, biofloc
composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture,
283(1): 29-35.

AZIM, M; LITTLE, D; BRON, J. 2008 Microbial protein production in activated suspension
tanks manipulating C:N ratio in feed and the implications for fish culture. Bioresource
Technology, 99(9): 3590-3599.

BHUJEL, R.C. 2013 On-farm feed management practices for Nile tilapia (Oreochromis niloticus)
in Thailand. In: HASAN, M.R.; NEW, M.B.(eds). On-farm feeding and feed management in
aquaculture. FAO Fisheries and Aquaculture Technical Paper No. 583. FAO, Rome. p.159í 189.

CALUMBY, J. A.; DOS SANTOS, M. M.; COELHO FILHO, P. A.; SOARES, E. C.; GENTELINI, A. L. 2014 Efeito da densidade no custo de produção de alevinos de tilápia em tanques-rede. Revista
Brasileira de Ciências Agrárias, 9(3): 459-464

COSTA, A; FRÓES, R. 2012 Produção de tilápias. Programa Rio Rural. Manual Técnico 31. 52p.
CRAB, R.; KOCHVA, M.; VERSTRAETE, W.; AVNIMELECH, Y. 2009 Bio-flocs technology application in over-wintering of tilapia. Aquacultural Engineering, 40(3): 105í 112.

DE SCHRYVER, P; CRAB, R; DEFOIRDT, T; BOON, N; VERSTRAETE, W. 2008 The basics of bio-flocs
technology: the added value for Aquaculture.Aquaculture, 277(3): 125-137.

DOS SANTOS, E; ALMEIDA, M; MOTA, S;DANTAS, M; MEDEIROS, M. 2009 Crescimento e qualidade dos alevinos de tilápia do Nilo produzidos em esgoto doméstico tratado. Revista Ciência Agronômica, 40(2): 232-239.

EBELING, J; TIMMONS, M; BISOGNI, J. 2006 Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammoniaí nitrogen in aquaculture systems. Aquaculture, 257(1): 346-358.

EKASARI, J.; RIVANDI, D.R.; FIRDAUSI, A.P.; SURAWIDJAJA, E.H.; ZAIRIN JR., M.; PETER BOSSIER; DE SCHRYVER, P. 2015 Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture, 441(1): 72í 77.

EL-SAYED, A-F.M. 2006. Tilapia culture. Oxfordshire:CABI Publishing. 277 p.

EMERENCIANO, M.; GAXIOLA, G.; CUZON, G.2013 Biofloc Technology (BFT): A Review for Aquaculture Application and Animal Food Industry. In: MATOVIC, M.D. (Ed.). Biomass
Now - Cultivation and Utilization. InTech, Manhattan. p.301-328.

FAO. FAO yearbook. 2016 Fishery and Aquaculture Statistics. 2014. Rome, Italy. 105p.

FELFí­–LDY L., SZABO E.; TOTHL L. 1987 A biológiai vizminí­¶sités. Vizügyi Hodrobiológia Vizdok,
Budapest, Hungary. 258p.

GOLTERMAN H.J.; CLYNO R.S.; OHNSTAD M.A. 1978 Methods for physical and chemical analysis
of freshwaters. Oxford. Blackwell Scientific Publications, London, England. 213p.

KOROLEFF F. 1976 Determination of nutrients. In: K. GRASSHOFF (Ed.). Methods of seawater analysis. Verlag Chemie Weinhein, New York. p.117-187.

LIM, C; YILDIRIM, M; LI, M; WELKER, T; KLESIUS, P. 2009 Influence of dietary levels of lipid and vitamin E on growth and resistance of Nile tilapia to Streptococcus iniae challenge. Aquaculture, 298(1): 76-82.

LING, J.; CHEN, S. 2005 Impact of organic carbon on nitrification performance of different biofilters. Aquacultural Engineering, 33(2): 150í 162.

LONG, L; YANG, J; LI, Y; GUAN, C; WU, F. 2015 Effect of biofloc technology on growth, digestive
enzyme activity, hematology, and immune response of genetically improved farmed tilapia
(Oreochromis niloticus). Aquaculture, 448(1): 135-141.

LUO, G; GAO, Q; WANG, C; LIU, W; SUN, D; LI, L; TAN, H. 2014 Growth, digestive activity, welfare,
and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus)
cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture, 422-
423(1): 1-7.

MACKERETH F.J.H.; HERON J. Y TALLING J.F. 1978 Water analysis: some revised methods for limnologists. Oxford. Blackwell Scientific Publications, London, England. 120p.

MAGONDU, E. W.; VERDEGEM, M. C. J.; NYAKEYA, K.; MOKAYA, M. 2015 Production of aerobic, anaerobic and anoxic bioflocs from tilapia sludge. International Journal of Fisheries and Aquatic Studies, 2(5): 347-352.

MAGONDU, E.W.; CHARO-KARISA, H.; VERDEGEM, M.C.J. 2013 Effect of C/N ratio levels and stocking density of Labeo victorianus on pond environmental quality using maize flour as a carbon source. Aquaculture, 410í 411(1): 157í 163.

MARTÍNEZ-CÓRDOVA L.R; EMERENCIANO M.; MIRANDA-BAEZA A.; MARTÍNEZ-PORCHAS
A. 2015 Microbial-based systems for aquaculture of fish and shrimp: an updated review. Reviews
in Aquaculture, 7(2): 131-148.

PÉREZ-FUENTES, J; HERNÁNDEZ, M; PÉREZ, C; FOGEL, I. 2016 C: N ratios affect nitrogen removal
and production of Nile tilapia Oreochromis niloticus raised in a biofloc system under high density cultivation. Aquaculture, 452(1): 247-251.

TRUNG, D. V.; DIU, N. T.; HAO, N. T.; GLENCROSS, B. 2011. Development of a nutritional model to
define the energy and protein requirements of tilapia, Oreochromis niloticus. Aquaculture, 320(1):
69-75.

WANG, G.; YU, E.; XIE, J.; YU, D.; LI, Z.; LUO, W.; QIU, L.; ZHENG, Z. 2015 Effect of C/N ratio on water quality in zero-water exchange tanks and the biofloc supplementation in feed on the growth performance of crucian carp, Carassius auratus. Aquaculture, 443(1): 98í 104.

WEBSTER, C.D.; LIM, C.E. 2002 (Ed.). Nutrient Requirements and Feeding of Finfish for quaculture. CABI Publishing, Oxford. 448p.

WEI, Y.; LIAO, S.A.; WANG, A.L. 2016 The effect of different carbon sources on the nutritional
composition, microbial community and structure of bioflocs. Aquaculture, 465(1): 88í 93.

XU, W. J.; MORRIS T.C; SAMOCHA T.M. 2016. Effects of C/N ratio on biofloc development,water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, highdensity, zero-exchange, outdoor tank system. Aquaculture, 453(1): 169í 175.

Downloads

Publicado

2017-09-25

Edição

Seção

Artigo cientí­fico