Eficiência de peixes nativos brasileiros como predadores de larvas de mosquitos

Autores

  • Marcel Câmara MIRALDO Universidade Estadual Paulista -  UNESP, Instituto de Biociências, Campus do Litoral Paulista / Universidade Estadual Paulista - UNESP, Laboratório de Aquicultura Sustentável http://orcid.org/0000-0002-9781-4793
  • Iracy Lea PECORA Universidade Estadual Paulista -  UNESP, Instituto de Biociências, Campus do Litoral Paulista http://orcid.org/0000-0002-0608-8678

DOI:

https://doi.org/10.20950/1678-2305.2017.93.98

Palavras-chave:

Aedes aegypti, acará-bandeira, mato-grosso, peixes larvófagos, controle de mosquitos

Resumo

Peixes são uma alternativa no controle biológico de mosquitos. Algumas espécies são comprovadamente eficientes em muitos paí­­ses, porém não são nativas brasileiras. Espécies brasileiras podem ser larvófagas, porém há carência de informações. Portanto, as espécies exóticas geralmente utilizadas, Poecilia reticulata e Betta splendens, foram comparadas com as espécies brasileiras, Hyphessobrycon eques e Pterophyllum scalare, por sua eficiência como predadoras de larvas do mosquito Aedes aegypti. Foram oferecidas 50 larvas do mosquito para os peixes (n = 20) e, após cinco minutos, as larvas restantes foram contabilizadas. Betta splendens ingeriu a maior quantidade de larvas, mas quando esse valor foi dividido pelo peso dos peixes, P. reticulata foi a espécie com maior ingestão por grama. As espécies nativas não diferiram de B. splendens na taxa de ingestão por peso. Conclui-se que o peixe mais eficiente foi P. reticulata, mas as espécies brasileiras apresentaram potencial como larvófagas, com menores impactos na biodiversidade.

Referências

AI, J.; ZHANG, Y.; ZHANG, W. 2016 Zika virus outbreak: "a perfect storm”. Emerging Microbes and Infections, 5(21): 1-3. ARAí­Å¡JO, H.; CARVALHO, D.; IOSHINO, R.; COSTA-DA-SILVA, A.; CAPURRO, M. 2015 Aedes aegypti control strategies in Brazil: Incorporation of new technologies to overcome the persistence of dengue epidemics. Insects, 6(2): 576-594.

AZEVEDO-SANTOS, V.M.; VITULE, J.R.S.; GARCIA-BERTHOU, E.; PELICICE, F.M.; SIMBERLOFF, D. 2016 Misguided strategy for mosquito control. Science, 351(6274): 675-675. BENTLEY, M.D.; DAY, J.F. 1989 Chemical ecology and behavioral aspects of mosquito oviposition. Annual Reviews of Entomology, 34: 401í 421.

BHATT, S.; GETHING, P.W.; BRADY, O.J.; MESSINA, J.P.; FARLOW, A.W.; MOYES, C.L.; DRAKE, J.M.; BROWNSTEIN, J.S.; HOEN, A.G.; SANKOH, O.; MYERS, M.F.; GEORGE, D.B.; JAENISCH, T.; WINT, G.R.W.; SIMMONS, C.P.; SCOTT, T.W.; FARRAR, J.J.; HAY, S.I. 2013 The global distribution and burden of dengue. Nature, 496(7446): 504-507.

BRADDOCK, J.C.; BRADDOCK, Z.I. 1955 Aggressive behavior among females of the Siamese Fighting fish, Betta splendens. Physiological Zoology, 28(2): 152-172.

CAIXETA, E.S.; SILVA, C.F.; SANTOS, V.S.V.; OLEGÁRIO DE CAMPOS Jí­Å¡NIOR, E.; PEREIRA, B.B. 2016 Ecotoxicological assessment of pyriproxyfen under environmentally realistic exposure conditions of integrated vector management for Aedes aegypti control in Brazil. Journal of Toxicology and Environmental Health, Part A, 79(18): 799-803.

CARVALHO, L.N.; DEL-CLARO, K. 2004 Effects of predation pressure on the feeding behaviour of the serpa tetra Hyphessobrycon eques (Ostariophysi, Characidae). Acta Ethologica, 7(2): 89-93.

CHANDRA, G.; BHATTACHARJEE, I.; CHATTERJEE, S.N.; GHOSH, A. 2008 Mosquito control by larvivorous fish. The Indian journal of medical research, 127(1): 13-27. CHAPMAN, H.C. 1974 Biological control of mosquito larvae. Annual review of entomology, 19(172): 33-59.

EISENSTEIN, M. 2016 Disease: poverty and pathogens. Nature, 531(7594): S61-S63. EL-SABAAWI, R.W.; FRAUENDORF, T.C.; MARQUES, P.S.; MACKENZIE, R.A.; MANNA, L.R.; MAZZONI, R.; PHILLIP, D.A.T.; WARBANSKI, M.L.; ZANDONí­â‚¬, E. 2016 Biodiversity and ecosystem risks arising from using guppies to control mosquitoes. Biology Letters, 12(10): 20160590.

FLETCHER, M.; TEKLCHAIMANOT, A.; YEMANE, G.; KASSAHUM, A.; KIDANE, G.; BEYENE, Y. 1993 Prospects for the use of larvivorous fish for malaria control in Ethiopia: search for indigenous species and evaluation of their feeding capacity for mosquito larvae. Journal of Tropical Medicine and Hygiene, 96(1): 12-21.

GÓMEZ-LAPLAZA, L.M.; GERLAI, R. 2011 Can angelfish (Pterophyllum scalare) count? Discrimination between different shoal sizes follows Weber’s law. Animal Cognition, 14(1): 1-9. HEMINGWAY, J.; RANSON, H. 2000 Insecticide Resistance in Insect Vectors of Human Disease. Annual Review of Entomology, 45(1): 371-391.

JOB, T. 1940 An investigation on the nutrition of the perches of the Madras coast. Records of the Indian Museum, 42: 289-364.

JOHNSON, R.N.; JOHNSON, L.D. 1973 Intra- and interspecific social and aggressive behaviour in the siamese fighting fish, Betta splendens. Animal Behaviour, 21(4): 665-672.

KUMAR, R.; HWANG, J.-S. 2006 Larvicidal efficiency of aquatic predators: A perspective for mosquito biocontrol. Zoological Studies, 45(4): 447-466.

LARDEUX, F.; SECHAN, Y.; LONCKE, S.; DEPARIS, X.; CHEFFORT, J.; FAARUIA, M. 2002 Integrated Control of Peridomestic Larval Habitats of Aedes and Culex Mosquitoes (Diptera: Culicidae) in Atoll Villages of French Polynesia. Journal of Medical Entomology, 39(3): 493-498.

LAWRENCE, C.; RUTHERFORD, N.; HAMILTON, R.; MEREDITH, D. 2016 Experimental evidence indicates that native freshwater fish outperform

introduced Gambusia in mosquito suppression when water temperature is below 25°C. Hydrobiologia, 766(1): 357-364.

LIMA, J.W. de O.; CAVALCANTI, L.P. de G.; PONTES, R.J.S.; HEUKELBACH, J. 2010 Survival of Betta splendens fish (Regan, 1910) in domestic water containers and its effectiveness in controlling Aedes aegypti larvae (Linnaeus, 1762) in Northeast Brazil. Tropical Medicine & International Health, 15(12): 1525-1532.

MARTÍNEZ-IBARRA, J.A.; GUILLÉN, Y.G.; ARREDONDO-JIMÉNEZ, J.; RODRÍGUEZ-LÓPEZ, M. 2002 Indigenous fish species for the control of Aedes aegypti in water storage tanks in Southern México. BioControl, 47(4): 481-486.

MESSINA, J.P.; BRADY, O.J.; PIGOTT, D.M.; GOLDING, N.; KRAEMER, M.U.G.; SCOTT, T.W.; WINT, G.R.W.; SMITH, D.L.; HAY, S.I. 2015 The many projected futures of dengue. Nature Reviews Microbiology, 13(4): 230-239.

MURUGAN, K.; DINESH, D.; PAULPANDI, M.; SUBRAMANIAM, J.; RAKESH, R.; AMUTHAVALLI, P.; PANNEERSELVAM, C.; SURESH, U.; VADIVALAGAN, C.; ALSALHI, M. S.; DEVANESAN, S.; WEI, H.; HIGUCHI, A.; NICOLETTI, M.; CANALE, A.; BENELLI, G. 2017 Mangrove helps: Sonneratia alba-Synthesized silver nanoparticles magnify guppy fish predation against Aedes aegypti young instars and down-regulate the expression of envelope (E) gene in dengue virus (Serotype DEN-2). Journal of Cluster Science, 28(1): 437-461.

NAM, V.S.; YEN, N.T.; HOLYNSKA, M.; REID, J.W.; KAY, B.H. 2000 National progress in dengue vector control in Vietnam: survey for Mesocyclops (Copepoda), Micronecta (Corixidae), and fish as biological control agents. The American Journal of Tropical Medicine and Hygiene, 62(1): 5-10.

NDEFFO-MBAH, M.L.; DURHAM, D.P.; SKRIP, L.A.; NSOESIE, E.O.; BROWNSTEIN, J.S.; FISH, D.; GALVANI, A.P. 2016 Evaluating the effectiveness of localized control strategies to curtail chikungunya. Scientific Reports, 6(23997): 1-9.

PEREIRA, B.B.; CAIXETA, E.S.; FREITAS, P.C.; SANTOS, V.S.V.; LIMONGI, J.E.; DE CAMPOS Jí­Å¡NIOR, E.O.; CAMPOS, C.F.; SOUTO, H.N.;

RODRIGUES, T.S.; MORELLI, S. 2016 Toxicological assessment of spinosad: Implications for integrated control of Aedes aegypti using larvicides and larvivorous fish. Journal of Toxicology and Environmental Health, Part A, 79(12): 477-481.

RAO, J.C.S.; RAO, K.G.; RAJU, C.S.; SIMHACHALAM, G. 2015 Larvicidal efficacy of four indigenous ornamental fish species of lake kolleru, India. Journal of Biodiversity and Environmental Sciences, 7(1): 164-172.

RUSSELL, B.M.; WANG, J.; WILLIAMS, Y.; HEARNDEN, M.N.; KAY, B.H. 2001 Laboratory evaluation of two native fishes from tropical North Queensland as biological control agents of subterranean Aedes aegypti. Journal of the American Mosquito Control Association, 17(2): 124-126.

SARWAR, M. 2015 Control of Dengue Carrier Aedes Mosquitoes (Diptera : Culicidae) larvae by larvivorous fishes and putting it into practice within water bodies. International Journal of Preventive Medicine Research, 1(4): 232-237.

SEGHERS, B. H. 1974 Schooling Behavior in the Guppy (Poecilia reticulata): an evolutionary response to predation. Evolution, 28(3): 486-489.

SENG, C.M.; SETHA, T.; NEALON, J.; SOCHEAT, D.; CHANTHA, N.; NATHAN, M.B. 2008 Community-based use of the larvivorous fish Poecilia reticulata to control the dengue vector Aedes aegypti in domestic water storage containers in rural Cambodia. Journal of Vector Ecology, 33(1): 139í 144.

SHAHI, M.; KAMRANI, E.; SALEHI, M.; HABIBI, R.; HANAFI-BOJD, A.A. 2015 Native larvivorous fish in an endemic malarious area of Southern Iran, a biological alternative factor for chemical larvicides in malaria control program. Iranian Journal of Public Health, 44(11): 1544-1549.

VAN DEN BERG, H.; ZAIM, M.; YADAV, R.S.; SOARES, A.; AMENESHEWA, B.; MNZAVA, A.; HII, J.; DASH, A.P.; EJOV, M. 2012 Global trends in the use of insecticides to control vector-borne diseases. Environmental Health Perspectives, 120(4): 577-582.

WORLD HEALTH ORGANIZATION. 2003 Use of fish for mosquito control. Arab Mass Media, Cairo. 77p.

WU, N.; WANG, S.; HAN, G.; XU, R.; TANG, G.; QIAN, C. 1987 Control of Aedes aegypti larvae in household water containers by Chinese cat fish. Bulletin of the World Health Organization, 65(4): 503-506.

Downloads

Publicado

2017-12-27

Edição

Seção

Nota cientí­­fica (Short Communication)