INCLUSÃO DE MANANOLIGOSACARÍDEO (MOS) NA DIETA AUMENTA PRODUÇÃO DE ESPÉCIES REATIVAS DE OXIGí­Å NIO (EROS) MAS DIMINUI A LISOZIMA SÉRICA DE TILÁPIAS DO NILO

Autores

  • Nycolas LEVY-PEREIRA Universidade de São Paulo -  USP, Faculdade de Zootecnia e Engenharia de Alimentos -  FZEA, Laboratório de Higiene Zootécnica http://orcid.org/0000-0003-0947-431X
  • Ricardo Luiz Moro de SOUSA Universidade de São Paulo -  USP, Faculdade de Zootecnia e Engenharia de Alimentos -  FZEA, Laboratório de Higiene Zootécnica http://orcid.org/0000-0001-7327-3999
  • Roberson SAKABE Universidade Federal Fluminense - UFF, Faculdade de Veterinária UFF, Departamento de Zootecnia e Desenvolvimento Agrossocioambiental Sustentável
  • Fernanda de Alexandre SEBASTIÃO Universidade Estadual Paulista -  UNESP, Centro de Aquicultura -  CAUNESP, Laboratório de Parasitologia e Microbiologia de Organismos Aquáticos http://orcid.org/0000-0003-3107-681X
  • Elisabeth Criscuolo URBINATI Universidade Estadual Paulista -  UNESP, Faculdade de Ciências Agrárias e Veterinárias http://orcid.org/0000-0001-6623-8095
  • Fabiana PILARSKI Universidade Estadual Paulista -  UNESP, Centro de Aquicultura -  CAUNESP, Laboratório de Parasitologia e Microbiologia de Organismos Aquáticos http://orcid.org/0000-0003-3263-3235

DOI:

https://doi.org/10.20950/1678-2305.2020.46.3.551

Palavras-chave:

hematology, immunology, mannan-oligosaccharide;, Oreochromis niloticus ;, productive parameters.

Resumo

No presente experimento, os efeitos do mananoligossacarí­­deo (MOS) na saúde e no crescimento de tilápias do Nilo foram investigados. Além do tratamento controle (sem adição de MOS), três ní­­veis de MOS foram adicionados na dieta de tilápias do Nilo (1, 8 e 15 g kg-1). Foram analisadas a hematologia, a produção de espécies reativas de oxigênio (EROs), a lisozima e parí­¢metros produtivos. Os peixes tiveram o sangue colhido no dia zero (amostragem basal) e depois de 60 dias de experimento, juntamente com a avaliação dos parí­¢metros produtivos. A alimentação com MOS diminuiu de forma significativa o consumo (p = 0.0299) em peixes alimentados com 1 e 8 g kg-1, mas sem quaisquer alterações sobre o ganho de peso (GP) e conversão alimentar (CA). Não foram observadas mudanças nos parí­¢metros hematológicos devido í­Â  alimentação com MOS. No entanto, o prebiótico alterou sua resposta imune, aumentando a produção de EROs nos animais alimentados com 1 g kg-1 (p<0,0001) e diminuindo a atividade de lisozima sérica em peixes alimentados com 15 g kg-1 (p<0,0001). Em conclusão, os autores recomendam a inclusão de 1 g kg-1 de MOS na dieta para tilápias do Nilo juvenis devido ao efeito positivo sobre o sistema imune.

Referências

Abreu, J.; Marzocchi-Machado, C.; Urbaczek, A.; Fonseca, L.; Urbinati, E.C. 2009. Leukocytes respiratory burst and lysozyme level in pacu (Piaractus mesopotamicus Holmberg, 1887). Brazilian Journal of Biology = Revista Brasileira de Biologia, 69(4): 1133-1139. http://dx.doi.org/10.1590/S1519-69842009000500018.

Akrami, R.; Chitsaz, H.; Hezarjaribi, A.; Ziaei, R. 2012. Effect of dietary mannan-oligosaccharide (MOS) on growth performance and immune response of Gibel carp juveniles (Carassius auratus gibelio). Journal of Veterinary Advances, 2(3): 507-513.

Anderson, D.; Siwicki, A. 1995. Basic hematology and serology for fish health programs. In: Shariff, M.; Arthur, J.R.; Subasinghe, R.P. (Eds.). Diseases in Asian Aquaculture II. Manila: Fish Health Section, Asian Fisheries Society. p. 185-102.

Andrews, S.R.; Sahu, N.P.; Pal, A.K.; Kumar, S. 2009. Haematological modulation and growth of Labeo rohita fingerlings: effect of dietary mannan-oligosaccharide, yeast extract, protein hydrolysate and chlorella. Aquaculture Research, 41(1): 61-69. http://dx.doi.org/10.1111/j.1365-2109.2009.02304.x.

Babior, B. 1984. The respiratory burst of phagocytes. The Journal of Clinical Investigation, 73(3): 599-601. http://dx.doi.org/10.1172/JCI111249.

Biller-Takahashi, J.; Takahashi, L.; Saita, M.; Gimbo, R.; Urbinati, E. 2013. Leukocytes respiratory burst activity as indicator of innate immunity of pacu Piaractus mesopotamicus. Brazilian Journal of Biology = Revista Brasileira de Biologia, 73(2): 425-429. http://dx.doi.org/10.1590/S1519-69842013000200026.

Bland, E.J.; Keshavarz, T.; Bucke, C. 2004. The influence of small oligosaccharides on the immune system. Carbohydrate Research, 339(10): 1673-1678. http://dx.doi.org/10.1016/j.carres.2004.05.009.

Collier, H.B. 1944. Standardization of blood haemoglobin determinations. Canadian Medical Association Journal, 50(6): 550-552.

Ellis, A. 1999. Immunity to bacteria in fish. Fish & Shellfish Immunology, 9(4): 291-308. http://dx.doi.org/10.1006/fsim.1998.0192.

FAO - Food and Agriculture Organization of the United Nations. 2016. The State of World Fisheries and Aquaculture: Contributing to food security and nutrition for all. Rome: FAO. 200p.

FAO - Food and Agriculture Organization of the United Nations. 2020. The State of World Fisheries and Aquaculture: Sustainability in action. Rome: FAO. 244p.

Goldenfarb, P.B.; Bowyer, F.P.; Hall, E.; Brosious, E. 1971. Reproducibility in the hematology laboratory: the microhematocrit determination. American Journal of Clinical Pathology, 56(1): 35-39. http://dx.doi.org/ 10.1093/ajcp/56.1.35.

Gómez, G.D.; Balcázar, J.L. 2008. A review on the interactions between gut microbiota and innate immunity of fish. FEMS Immunology and Medical Microbiology, 52(2): 145-154. http://dx.doi.org/10.1111/j.1574-695X.2007.00343.x.

Grisdale-Helland, B.; Helland, S.J.; Gatlin 3rd, D.M. 2008. The effects of dietary supplementation with mannan-oligosaccharide, fructooligosaccharide or galactooligosaccharide on the growth and feed utilization of Atlantic salmon (Salmo salar). Aquaculture (Amsterdam, Netherlands), 283(1-4): 163-167. http://dx.doi.org/10.1016/ j.aquaculture.2008.07.012.

Guzmán, D.M.M.; González, M.T. 2012. Evaluation of somatic indexes, hematology and liver histopathology of the fish Labrisomus philippii from San Jorge Bay, northern Chile, as associated with environmental stress. Revista de Biologí­­a Marina y Oceanografí­­a, 47(1): 99-107. http://dx.doi.org/10.4067/S0718-19572012000100009.

Hoidal, J.R. 2001. Reactive oxygen species and cell signaling. American Journal of Respiratory Cell and Molecular Biology, 25(6): 661-663. http://dx.doi.org/10.1165/ajrcmb.25.6.f213.

Hrubec, T.; Smith, S. 2000. Hematology of fish. In: Schalm, O.W.; Jain, N.C.; Carroll, E.J. Schalm’s veterinary hematology. Philadelphia: Lippincott Williams and Wilkins. p. 1120-1125.

Hrubec, T.C.; Smith, S.A.; Robertson, J.L. 2001. Age‐related changes in hematology and plasma chemistry values of hybrid striped bass (Morone chrysops í­"” Morone saxatilis). Veterinary Clinical Pathology, 30(1): 8-15. http://dx.doi.org/10.1111/j.1939-165X.2001.tb00249.x.

IBGE - Instituto Brasileiro de Geografia e Estatí­­stica. 2018. Pesquisa da Pecuária Municipal í  PPM. Rio de Janeiro: IBGE. Available from: <https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9107-producao-da-pecuaria-municipal.html?=&t=downloads>. Accessed: Feb. 4, 2020.

Ibrahim, N.; El Naggar, G. 2010. Water quality, fish production and economics of Nile Tilapia, Oreochromis niloticus, and African Catfish, Clarias gariepinus, monoculture and polycultures. Journal of the World Aquaculture Society, 41(4): 574-582. http://dx.doi.org/10.1111/j.1749-7345.2010.00397.x.

Iwama, G.K.; Pickering, A.; Sumpter, J.; Schreck, C. (2011). Fish stress and health in aquaculture. Cambridge: Cambridge University Press. v. 62, 278p.

Levy-Pereira, N.; Yasui, G.S.; Cardozo, M.V.; Dias Neto, J.; Vaz Farias, T.H.; Sakabe, R.; Pádua, S.B.; Pilarski, F. 2018. Immunostimulation and increase of intestinal lactic acid bacteria with dietary mannan-oligosaccharide in Nile tilapia juveniles. Brazilian Journal of Animal Science, 47: 1-7. http://dx.doi.org/10.1590/rbz4720170006.

Magnadóttir, B. 2006. Innate immunity of fish (overview). Fish & Shellfish Immunology, 20(2): 137-151. http://dx.doi.org/10.1016/j.fsi.2004.09.006.

Mansour, M.R.; Akrami, R.; Ghobadi, S.H.; Denji, K.A.; Ezatrahimi, N.; Gharaei, A. 2012. Effect of dietary mannan-oligosaccharide (MOS) on growth performance, survival, body composition, and some hematological parameters in giant sturgeon juvenile (Huso huso Linnaeus, 1754). Fish Physiology and Biochemistry, 38: 829-835. http://dx.doi.org/10.1007/s10695-011-9570-4.

Mauel, M.; Soto, E.; Moralis, J.; Hawke, J. 2007. A piscirickettsiosis-like syndrome in cultured Nile tilapia in Latin America with Francisella spp. as the pathogenic agent. Journal of Aquatic Animal Health, 19(1): 27-34. http://dx.doi.org/10.1577/H06-025.1.

Mian, G.F.; Godoy, D.T.; Leal, C.A.G.; Yuhara, T.Y.; Costa, G.M.; Figueiredo, H.C.P. 2009. Aspects of the natural history and virulence of S. agalactiae infection in Nile tilapia. Veterinary Microbiology, 136(1-2): 180-183. http://dx.doi.org/10.1016/j.vetmic.2008.10.016.

Nakao, M.; Tsujikura, M.; Ichiki, S.; Vo, T.K.; Somamoto, T. 2011. The complement system in teleost fish: Progress of post-homolog-hunting researches. Developmental and Comparative Immunology, 35(12): 1296-1308. http://dx.doi.org/10.1016/j.dci.2011.03.003.

NRC - National Research Council. 1977. Nutrient requirements of warmwater fishes and shellfishes. Washington: National Academy. 80p. https://doi.org/10.17226/20664.

Olsen, R.; Myklebust, R.; Kryvi, H.; Mayhew, T.; Ringí­¸, E. 2001. Damaging effect of dietary inulin on intestinal enterocytes in Arctic charr (Salvelinus alpinus L.). Aquaculture Research, 32(11): 931-934. http://dx.doi.org/10.1046/j.1365-2109.2001.00626.x.

Pohlenz, C.; Gatlin, D.M. 2014. Interrelationships between fish nutrition and health. Aquaculture, 431: 111-117. http://dx.doi.org/10.1016/j.aquaculture.2014.02.008.

Quinn, M.T.; Gauss, K.A. 2004. Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. Journal of Leukocyte Biology, 76(4): 760-781. https://doi.org/10.1189/jlb.0404216.

Radman, R.; Bland Elliot, J.; Sangworachat, N.; Bucke, C.; Keshavarz, T. 2006. Effects of oligosaccharides and polysaccharides on the generation of reactive oxygen species in different biological systems. Biotechnology and Applied Biochemistry, 44(3): 129-133. http://dx.doi.org/10.1042/BA20050217.

Sado, R.Y.; Bicudo, A.J.D.A.; Cyrino, J.E.P. 2008. Feeding dietary mannan-oligosaccharides to juvenile Nile tilapis, Oreochromis niloticus, has no effect on hematological parameters and showed decreased feed consumption. Journal of the World Aquaculture Society, 39(6): 821-826. http://dx.doi.org/10.1111/j.1749-7345.2008.00219.x.

Saurabh, S.; Sahoo, P. 2008. Lysozyme: an important defence molecule of fish innate immune system. Aquaculture Research, 39(3): 223-239. http://dx.doi.org/10.1111/j.1365-2109.2007.01883.x.

Selim, K.M.; Reda, R.M. 2015. Beta-glucans and mannan-oligosaccharides enhance growth and immunity in Nile Tilapia. North American Journal of Aquaculture, 77(1): 22-30. http://dx.doi.org/10.1080/15222055.2014.951812.

Soares, M.P.; Oliveira, F.C.; Cardoso, I.L.; Urbinati, E.C.; Campos, C.M.; Hisano, H. 2018. Glucan-MOSï"ºÅ¡ improved growth and innate immunity in pacu stressed and experimentally infected with Aeromonas hydrophila. Fish & Shellfish Immunology, 73: 133-140. http://dx.doi.org/10.1016/j.fsi.2017.11.046.

Song, S.K.; Beck, B.R.; Kim, D.; Park, J.; Kim, J.; Kim, H.D.; Ringí­¸, E. 2014. Prebiotics as immunostimulants in aquaculture: A review. Fish & Shellfish Immunology, 40(1): 40-48. http://dx.doi.org/10.1016/j.fsi.2014.06.016.

Staykov, Y.; Spring, P.; Denev, S.; Sweetman, J. 2007. Effect of a mannan-oligosaccharide on the growth performance and immune status of rainbow trout (Oncorhynchus mykiss). Aquaculture International, 15: 153-161. http://dx.doi.org/10.1007/s10499-007-9096-z.

Talpur, A.D.; Munir, M.B.; Mary, A.; Hashim, R. 2014. Dietary probiotics and prebiotics improved food acceptability, growth performance, haematology and immunological parameters and disease resistance against Aeromonas hydrophila in snakehead (Channa striata) fingerlings. Aquaculture, 426-427: 14-20. http://dx.doi.org/10.1016/j.aquaculture.2014.01.013.

Tavares-Dias, M.; de Moraes, F.R. 2003. Caracterí­­sticas hematológicas da Tilapia rendalli Boulenger, 1896 (Osteichthyes: Cichlidae) capturada em” Pesque-Pague” de Franca, São Paulo. Brasil. Bioscience Journal, 19(1): 107-114. Available from: <http://www.seer.ufu.br/index.php/biosciencejournal/article/view/6443>. Accessed: Feb. 4, 2020.

Torrecillas, S.; Makol, A.; Caballero, M.J.; Montero, D.; Gines, R.; Sweetman, J.; Izquierdo, M. 2011. Improved feed utilization, intestinal mucus production and immune parameters in sea bass (Dicentrarchus labrax) fed mannan-oligosaccharides (MOS). Aquaculture Nutrition, 17(2): 223-233. http://dx.doi.org/10.1111/j.1365-2095.2009.00730.x.

Torrecillas, S.; Makol, A.; Caballero, M.J.; Montero, D.; Robaina, L.; Real, F.; Sweetman, J.; Tort, L.; Izquierdo, M.S. 2007. Immune stimulation and improved infection resistance in European sea bass (Dicentrarchus labrax) fed mannan-oligosaccharides. Fish & Shellfish Immunology, 23(5): 969-981. http://dx.doi.org/10.1016/j.fsi.2007.03.007.

Torrecillas, S.; Montero, D.; Izquierdo, M. 2014. Improved health and growth of fish fed mannan-oligosaccharides: Potential mode of action. Fish & Shellfish Immunology, 36(2): 525-544. http://dx.doi.org/10.1016/j.fsi.2013.12.029.

Wintrobe, M.M. 1934. Variations in the size and hemoglobin content of erythrocytes in the blood of various vertebrates. Folia Haematologie, 51: 32-49.

Downloads

Publicado

2020-12-14

Edição

Seção

Artigo cientí­fico

Artigos mais lidos pelo mesmo(s) autor(es)