EFEITO DA MISTURA DE POLÍMEROS NO DESENVOLVIMENTO DE BIOPLÁSTICO A PARTIR DE RESÍDUOS DE PEIXE

Autores

  • Eleda Maria Paixão Xavier Neves Universidade Federal do Pará -  UFPA, Programa de Pós-graduação em Ciência e Tecnologia de Alimentos, Laboratório de Produtos de Origem Animal,
  • Rayanne Rocha Pereira Universidade Federal do Pará -  UFPA, Programa de Pós-graduação em Inovação Farmacêutica, Laboratório P&D Farmacêutico e Cosmético,
  • Glauce Vasconcelos da Silva Pereira Universidade Federal do Pará -  UFPA, Programa de Pós-graduação em Ciência e Tecnologia de Alimentos, Laboratório de Produtos de Origem Animal
  • Gleice Vasconcelos da Silva Pereira Universidade Federal do Pará -  UFPA, Programa de Pós-graduação em Ciência e Tecnologia de Alimentos, Laboratório de Produtos de Origem Animal,
  • Lorena Limão Vieira Universidade Federal do Pará -  UFPA, Programa de Pós-graduação em Ciência e Tecnologia de Alimentos, Laboratório de Produtos de Origem Animal
  • Lúcia de Fátima Henriques Lourenço Universidade Federal do Pará -  UFPA, Programa de Pós-graduação em Ciência e Tecnologia de Alimentos, Laboratório de Produtos de Origem Animal,

DOI:

https://doi.org/10.20950/1678-2305.2019.45.4.518

Palavras-chave:

blended films, fish gelatin, fish myofibrillar protein, technological properties

Resumo

A bioconversão de proteí­­nas de subprodutos da indústria pesqueira em bioplástico possibilita a valorização do material biológico, reduzindo a produção de descarte e consequentemente, de impactos ambientais negativos do uso de embalagens sintéticas. O objetivo deste trabalho foi misturar gelatina e proteí­­nas miofibrilares de pescada gó (Macrodon ancylodon) com intuito de desenvolver filmes biodegradáveis com propriedades tecnológicas aprimoradas. As propriedades dos filmes de mistura foram comparadas com as de filmes dos polí­­meros individuais. A espectroscopia de infravermelho com transformada de Fourier revelou boa compatilidade quí­­mica entre gelatina e proteí­­nas miofibrilares na formação do filme de mistura. A interação entre os polí­­meros foi conduzida por ligações de hidrogênio, formando pelí­­cula coesa e reforçada. Os filmes de mistura além de apresentarem os menores valores de permeabilidade ao vapor de água e solubilidade, também foram transparentes e, termicamente resistentes. Assim a mistura entre gelatina e proteí­­nas miofibrilares possibilitou a formação de pelí­­culas biodegradáveis com propriedades tecnológicas superiores í­Â s produzidas com os polí­­meros separados.

Referências

Abdelhedi, O.; Nasri, R.; Jridi, M.; Kchaou, H.; Nasreddine, B.; Karbowiak, T.; Debeaufort, F.; Nasri, M. 2018. Composite bioactive films based on smooth-hound viscera proteins and gelatin: Physicochemical characterization and antioxidant properties. Food Hydrocolloids, 74: 176-186. http://dx.doi.org/10.1016/j.foodhyd.2017.08.006.

Alfaro, A.T.; Fonseca, G.G.; Balbinot, E.; Prentice, C. 2014. Characterization of wami tilapia (Oreochromis urolepis hornorum) skin gelatin: microbiological, rheological and structural properties. Food Science & Technology International, 20(5): 373-381. http://dx.doi.org/10.1177/1082013213488776. PMid:23751549.

Ansorena, M.R.; Zubeldí­­a, F.; Marcovick, N.E. 2016. Active wheat gluten films obtained by thermoplastic processing. Food Science and Technology, 69: 47-54. http://dx.doi.org/10.1016/j.lwt.2016.01.020.

Araújo, C.S.; Rodrigues, A.M.C.; Peixoto Joele, M.R.S.; Araújo, E.A.F.; Lourenço, L.F.H. 2018. Optimizing process parameters to obtain a bioplastic using proteins from fish byproducts through the response surface methodology. Food Packaging and Shelf Life, 16: 23-30. http://dx.doi.org/10.1016/j.fpsl.2018.01.009.

Arfat, Y.A.; Benjakul, S.; Prodpran, T.; Osako, K. 2014a. Development and characterisation of blend films based on fish protein isolate and fish skin gelatin. Food Hydrocolloids, 39: 58-67. http://dx.doi.org/10.1016/j.foodhyd.2013.12.028.

Arfat, Y.A.; Benjakul, S.; Prodpran, T.; Sumpavapol, P.; Songtipya, P. 2014b. Properties and antimicrobial activity of fish protein isolate/fish skin gelatin film containing basil leaf essential oil and zinc oxide nanoparticles. Food Hydrocolloids, 41: 265-273. http://dx.doi.org/10.1016/j.foodhyd.2014.04.023.

Arroyo, B.J.; Santos, A.P.; Melo, E.A.; Campos, A.; Lins, L.; Boyano-Orozco, L.C. 2019. Bioactive compounds and their potential use as ingredients for food and its application in food packaging. In: Campos, M.R.S. (Ed.). Bioactive compounds. Elsevier. chap. 8, p. 146-153. http://dx.doi.org/10.1016/B978-0-12-814774-0.00008-6.

ASTM í  American Society for Testing and Materials. 1986. ASTM D882: standard test methods for tensile properties of thin plastic sheeting. Philadelphia: ASTM.
Bergo, P.; Sobral, P.J.A. 2007. Effects of plasticizer on physical properties of pigskin gelatin films. Food Hydrocolloids, 21(8): 1285-1289. http://dx.doi.org/10.1016/j.foodhyd.2006.09.014.

Blanc, S.; Massaglia, S.; Brun, F.; Peano, C.; Mosso, A.; Giuggioli, N.R. 2019. Use of bio-based plastics in the fruit supply chain: an integrated approach to assess environmental, economic, and social sustainability. Sustainability, 11(9): 2475-2493. http://dx.doi.org/10.3390/su11092475.

Bourbon, A.I.; Pereira, R.N.; Pastrana, L.M.; Vicente, A.A.; Cerqueira, M.A. 2019. Protein-Based nanostructures for food applications. Gels, 5(1): 9. http://dx.doi.org/10.3390/gels5010009. PMid:30813359.

Boyd, L.C.; Green, D.P.; Giesbrecht, F.B.; King, M.F. 1993. Inhibition of oxidative rancidity in frozen cooked fish flakes by tert butyl-hydroquinone and rosemary extract. Journal of the Science of Food and Agriculture, 61(1): 87-93. http://dx.doi.org/10.1002/jsfa.2740610114.

Bravin, B.; Peressini, D.; Sensidoni, A. 2006. Development and application of polysaccharide-lipid edible coating to extend shelf-life of dry bakery products. Journal of Food Engineering, 76(3): 280-290. http://dx.doi.org/10.1016/j.jfoodeng.2005.05.021.

Bueno, C.M.; Alvim, I.D.; Koberstein, T.C.R.D.; Portella, M.C.; Grosso, C. 2011. Produção de gelatina de pele de tilápia e sua utilização para obtenção de micropartí­­culas contendo óleo de salmão. Brazilian Journal of Food Technology, 14(1): 65-73. http://dx.doi.org/10.4260/BJFT2011140100009.

Chinabhark, K.; Benjakul, S.; Prodpran, T. 2007. Effect of pH on properties of protein-based film from bigeye snapper (Priacanthus tayenus) surimi. Bioresource Technology, 98(1): 221-225. http://dx.doi.org/10.1016/j.biortech.2005.11.012. PMid:16378726.

Ekrami, M.; Emam-Djomeh, Z. 2014. Water vapor permeability, optical and mechanical properties of salep-based edible film. Journal of Food Processing and Preservation, 38(4): 1812-1820. http://dx.doi.org/10.1111/jfpp.12152.

Gómez-Guillén, M.C.; Giménez, B.; López-Caballero, M.E.; Montero, M.P. 2011. Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocolloids, 25(8): 1813-1827. http://dx.doi.org/10.1016/j.foodhyd.2011.02.007.

Gontard, N.; Guilbert, S.; Cuq, J.L. 1996. Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat gluten film. Journal of Food Science, 58(8): 206-211. http://dx.doi.org/10.1111/j.1365-2621.1993.tb03246.x.

Guerrero, P.; Stefani, P.M.; Ruseckaite, R.A.; de la Caba, K. 2011. Functional properties of films based on soy protein isolate and gelatin processed by compression molding. Journal of Food Engineering, 105(1): 65-72. http://dx.doi.org/10.1016/j.jfoodeng.2011.02.003.

Hammann, F.; Schmid, M. 2014. Determination and quantification of molecular interactions in protein films: a review. Materials, 7(12): 7975-7996. http://dx.doi.org/10.3390/ma7127975. PMid:28788285.

Han, J.H.; Floros, J.D. 1997. Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. Journal of Plastic Film & Sheeting, 13(4): 287-298. http://dx.doi.org/10.1177/875608799701300405.

Hoque, M.S.; Benjakul, S.; Prodpran, T. 2011. Effects of partial hydrolysis and plasticizer content on the properties of film from cuttlefish (Sepia pharaonis) skin gelatin. Food Hydrocolloids, 25(1): 82-90. http://dx.doi.org/10.1016/j.foodhyd.2010.05.008.

Hosseini, S.F.; Javidi, Z.; Rezaei, M. 2016. Efficient gas barrier properties of multi-layer films based on poly(lactic acid) and fish gelatin. International Journal of Biological Macromolecules, 92: 1205-1214. http://dx.doi.org/10.1016/j.ijbiomac.2016.08.034. PMid:27524275.

Kaewprachu, P.; Osako, K.; Benjakul, S.; Tongdeesoontorn, W.; Rawdkuen, S. 2016. Biodegradable protein-based films and their properties: a comparative study. Packaging Technology & Science, 29(2): 77-90. http://dx.doi.org/10.1002/pts.2183.

Kaewprachu, P.; Rawdkuen, S. 2014. Mechanical and physic-chemical properties of biodegradable protein-based films: a comparative study. Food and Applied Bioscience Journal, 2(1): 15-30. http://dx.doi.org/10.14456/fabj.2014.2.

Krochta, J.M. 2002. Protein as raw materials for films and coatings: definitions, current status, and opportunities. In: Gennadios, A. (Ed.). Protein-based films and coating. New York: CRC Press. p. 1-39. http://dx.doi.org/10.1201/9781420031980.ch1.

Lopez-Rubio, A.; Lagarón, J.M.; Ocio, M.J. 2008. Active polymer packaging of non-meat food products. Smart Packaging Technologies, 2: 19-30. http://dx.doi.org/10.1002/9780470753699.ch2.

Mirzakhani, M.; Moini, S.; Emam-Djomeh, Z. 2015. Physical and mechanical features investigation of protein-based biodegradable films obtained from trout fish waste. Journal of Food and Bioprocess Engineering, 1(2): 49-62.

Mohajer, S.; Rezaei, M.; Hosseini, S.F. 2017. Physico-chemical and microstructural properties of fish gelatin/agar bio-based blend films. Carbohydrate Polymers, 157: 784-793. http://dx.doi.org/10.1016/j.carbpol.2016.10.061. PMid:27987991.

Muyonga, J.H.; Cole, C.G.B.; Duodu, K.G. 2004. Characterization of acid soluble collagen from skins of young and adult Nile perch (Lates niloticus). Food Chemistry, 85(1): 81-89. http://dx.doi.org/10.1016/j.foodchem.2003.06.006.

Nuanmano, S.; Prodpran, T.; Benjakul, S. 2015. Potential use of gelatin hydrolysate as plasticizer in fish myofibrillar protein film. Food Hydrocolloids, 47: 61-68. http://dx.doi.org/10.1016/j.foodhyd.2015.01.005.

Nur Hanani, Z.A.; Roos, Y.H.; Kerry, J.P. 2012. Use of beef, pork and fish gelatin sources in the manufacture of films and assessment of their composition and mechanical properties. Food Hydrocolloids, 29(1): 144-151. http://dx.doi.org/10.1016/j.foodhyd.2012.01.015.

Nur Hanani, Z.A.; Roos, Y.H.; Kerry, J.P. 2014. Use and applications of gelatin as potential biodegradable packaging materials for food products. International Journal of Biological Macromolecules, 71: 94-102. http://dx.doi.org/10.1016/j.ijbiomac.2014.04.027. PMid:24769086.

Oujifard, A.; Benjakul, S.; Prodpran, T.; Seyfabadi, J. 2013. Properties of red tilapia (Oreochromis niloticus) protein based film as affected by cryoprotectants. Food Hydrocolloids, 32(2): 245-251. http://dx.doi.org/10.1016/j.foodhyd.2012.12.023.

Prodpran, T.; Benjakul, S.; Artharn, A. 2007. Properties and microstructure of protein-based film from round scad (Decapterus maruadsi) muscle as affected by palm oil and chitosan incorporation. International Journal of Biological Macromolecules, 41(5): 605-614. http://dx.doi.org/10.1016/j.ijbiomac.2007.07.020. PMid:17868827.

Romani, V.P.; Machado, A.V.; Olsen, B.D.; Martins, V.G. 2018. Effects of pH modification in proteins from fish (Whitemouth croaker) and their application in food packaging films. Food Hydrocolloids, 74: 307-314. http://dx.doi.org/10.1016/j.foodhyd.2017.08.021.

Statsoft. 2004. Statistica for Windows, versão 7.0.
Silva, N.S.; Hernández, E.J.G.P.; Araújo, C.S.; Peixoto Joele, M.R.S.; Lourenço, L.F.H. 2018. Development and optimization of biodegradable fish gelatin composite film added with buriti oil. CYTA: Journal of Food, 16(1): 340-349. http://dx.doi.org/10.1080/19476337.2017.1406005.

Sobral, P.J.A.; Monterrey-Q, E.S.; Habitante, A.M.Q.B. 2002. Glass transition study of nile tilapia myofibrillar protein films plasticized by glycerin and water. Journal of Thermal Analysis and Calorimetry, 67(2): 499-504. http://dx.doi.org/10.1023/A:1013905400900.

Souza, A.C.; Dias, A.M.A.; Sousa, H.S.; Tadini, C.C. 2014. Impregnation of cinnamaldehyde into cassava starch biocomposite films using supercritical fluid technology for the development of food active packaging. Carbohydrate Polymers, 102: 830-837. http://dx.doi.org/10.1016/j.carbpol.2013.10.082. PMid:24507353.

Tongnuanchan, P.; Benjakul, S.; Prodpran, T. 2011a. Roles of lipid oxidation and pH on properties and yellow discolouration during storage of film from red tilapia (Oreochromis niloticus) muscle protein. Food Hydrocolloids, 25(3): 426-433. http://dx.doi.org/10.1016/j.foodhyd.2010.07.013.

Uranga, J.; Etxabide, A.; Guerrero, P.; de la Caba, K. 2018. Development of active fish gelatin films with anthocyanins by compression molding. Food Hydrocolloids, 84: 313-320. http://dx.doi.org/10.1016/j.foodhyd.2018.06.018.

Wang, L.; Liu, L.; Holmes, J.; Kerry, J.F.; Kerry, J.P. 2007. Assessment of filmâ€"˜forming potential and properties of protein and polysaccharide-based biopolymer films. International Journal of Food Science & Technology, 42(9): 1128-1138. http://dx.doi.org/10.1111/j.1365-2621.2006.01440.x.

Xie, Y.; Zhou, H.M.; Qian, H.F. 2006. Effect of addition of peach gum on physicochemical properties of gelatin-based microcapsule. Journal of Food Biochemistry, 30(3): 302-312. http://dx.doi.org/10.1111/j.1745-4514.2006.00061.x.

Yao, Y.; Ding, D.; Shao, H.; Peng, Q.; Huang, Y. 2017. Antibacterial activity and physical properties of fish gelatin-chitosan edible films supplemented with D-Limonene. International Journal of Polymer Science, 2017: 1-9. http://dx.doi.org/10.1155/2017/1837171.

Zavareze, E.R.; Halal, S.L.M.; Telles, A.C.; Prentice-Hernández, C. 2012. 2012. Biodegradable films based on myofibrillar proteins of fish. Brazilian Journal of Food Technology, 4: 53-57. http://dx.doi.org/10.1590/S1981-67232012005000038.

Downloads

Publicado

2019-12-03

Edição

Seção

Artigo cientí­fico

Artigos mais lidos pelo mesmo(s) autor(es)