EFEITOS DO COMPLEXO PROBIÓTICO BAC-TRAT® SOBRE O CRESCIMENTO, PARÂMETROS HEMATOLÓGICOS E INTESTINAIS DA TILÁPIA DO NILO, MANTIDA A BAIXAS TEMPERATURAS

Autores

  • José Rafael Soares FONSECA Universidade Estadual do Oeste do Paraná -  UNIOESTE, Centro de Engenharias e Ciências Exatas, Programa de Pós-Graduação em Recursos Pesqueiros e Engenharia de Pesca http://orcid.org/0000-0003-1934-333X
  • Kerolay Valadão CARVALHO Universidade Estadual do Oeste do Paraná -  UNIOESTE, Centro de Engenharias e Ciências Exatas, Programa de Pós-Graduação em Recursos Pesqueiros e Engenharia de Pesca http://orcid.org/0000-0002-4899-8653
  • Antônio Francisco Campanha da SILVA Universidade Estadual do Oeste do Paraná -  UNIOESTE, Centro de Engenharias e Ciências Exatas, Programa de Pós-Graduação em Recursos Pesqueiros e Engenharia de Pesca http://orcid.org/0000-0001-7513-2890
  • Jakeline Marcela Azambuja de FREITAS Universidade Estadual do Oeste do Paraná -  UNIOESTE, Centro de Engenharias e Ciências Exatas, Programa de Pós-Graduação em Recursos Pesqueiros e Engenharia de Pesca http://orcid.org/0000-0001-8699-7291
  • Altevir SIGNOR Universidade Estadual do Oeste do Paraná -  UNIOESTE, Centro de Engenharias e Ciências Exatas, Programa de Pós-Graduação em Recursos Pesqueiros e Engenharia de Pesca http://orcid.org/0000-0002-4659-6466
  • Aldi FEIDEN Universidade Estadual do Oeste do Paraná -  UNIOESTE, Centro de Engenharias e Ciências Exatas, Programa de Pós-Graduação em Recursos Pesqueiros e Engenharia de Pesca http://orcid.org/0000-0002-6823-9291

DOI:

https://doi.org/10.20950/1678-2305.2020.46.2.575

Palavras-chave:

productive performance;, leukocytes;, histology;, morphology;, vacuolization.

Resumo

O objetivo desse trabalho foi avaliar os efeitos do complexo probiótico BAC-TRAT® aplicado na ração e na água de criação de tilápias-do-Nilo, mantidas em condições de baixa temperatura. Foram avaliados três tratamentos: controle (ausência de probiótico: T0), adição de probiótico na água (T1) e ração com probiótico (T2). O desempenho zootécnico da tilápia-do-Nilo não foi influenciado pela inclusão do probiótico (p>0,05). Os parí­¢metros hematológicos foram influenciados pelos tratamentos, com leucócitos e linfócitos apresentando menores concentrações no T2. Para composição corporal do peixe inteiro, a aplicação do probiótico na água determinou aumentos significativos nos teores de extrato etéreo, enquanto o conteúdo de cinzas foi superior nos peixes dos tratamentos T1 e T2. Em relação aos parí­¢metros histomorfométricos do intestino, observou-se que a altura dos vilos e a espessura da túnica muscular foram maiores no T1 em comparação ao T0. Para o tecido hepático, T2 determinou os menores valores para perí­­metro, área e volume, e a avaliação qualitativa demonstrou pouca e média vacuolização para todos os tratamentos. Conclui-se que, apesar de contribuir para o aumento da área dos vilos intestinais, o uso do complexo probiótico BAC-TRAT® em baixas temperaturas não apresenta efeitos benéficos ao crescimento da tilápia-do-Nilo.

Referências

Abarick, E.D.; Cai, J.; Lu, Y.; Huang, Y.; Chen, L.; Jian, J.; Tang, J.; Jun, L.; Kuebutornye, F.K.A. 2018. Effects of a commercial probiotic BS containing Bacillus subtilis and Bacillus licheniformis on growth, immune response and disease resistance in Nile tilapia, Oreochromis niloticus. Fish and Shellfish Immunology, 82: 229-238. https://doi.org/10.1016/j.fsi.2018.08.037.

Adeoye, A.A.; Yomla, R.; Torres, A.J.; Rodiles, A.; Merrifield, D.L.; Davies, S.J. 2016. Combined effects of exogenous enzymes and probiotic on Nile tilapia (Oreochromis niloticus) growth, intestinal morphology and microbiome. Aquaculture, 463: 61-70. https://dx.doi.org/10.1016/j.aquaculture.2016.05.028.

Amarante, J.F.; Kolling, L.; Ferronato, A.I.; Vargas, A.C.; Costa, M.M.; Amarante, T.A.B. 2018. Resistência aos antimicrobianos de bactérias obtidas de carpas (Cyprinus carpio) cultivadas em sistema semi-intensivo. Ciência Animal Brasileira, 19(1): 1-7. http://dx. doi.org/10.1590/1809-6891v19e-34647.

Araujo, D. De M.; Pezzato, A.C.; Barros, M.M.; Pezzato, L.E.; Nakagome, F.K. 2011. Hematologia de tilápias do Nilo alimentadas com dietas com óleos vegetais e estimuladas pelo frio. Pesquisa Agropecuária Brasileira, 46(3): 294-302. http://dx.doi.org/10.1590/S0100-204X2011000300010.

AOAC í  Association of Official Analytical Chemists. 2012. Official methods of analysis. 19th ed. Gaithersburg: AOAC. 3000p.

Azari, A.H.; Hashim, R.; Azari Takami, G.; Farabi, S.M.V.; Darvish, M.; Safari, R. 2011. Effect of (GroBiotic®-A) on the growth performance and intestinal microflora on rainbow trout (Oncorhynchus mykiss Walbaum). Journal of Research in Biology, 1: 325-34.

Bagheri, T.; Hedayati, S.A.; Yavari, V.; Alizade, M.; Farzanfar, A. 2008. Growth, survival and gut microbial load of rainbow trout (Onchorhynchus mykiss) fry given diet supplemented with probiotic during the two months of first feeding. Turkish Journal of Fisheries and Aquatic Sciences, 8(1): 43-48.

Balarin, J.D. 1982. The intensive culture of tilapia in tanks, raceways and cages. Recent Advances in Aquaculture. p. 267í 355.

Banerjee, G.; Ray, A.K. 2017. The advancement of probiotics research and its application in fish farming industries. Research in Veterinary Science, 115: 66-77. https://doi.org/10.1016/j.rvsc.2017.01.016.

Barros, M.M.; Falcon, D.R.; Orsi, R.O.; Pezzato, L.E.; Fernandes Jr, A.C.; Guimarães, I.G.; Fernandes Jr, A.; Padovani, C.R.; Sartori, M.M.P. 2014. Non-specific immune parameters and physiological response of Nile tilapia fed β-glucan and vitamin C for different periods and submitted to stress and bacterial challenge. Fish & Shellfish Immunology, 39(2): 188-195. https://doi.org/10.1016/j.fsi.2014.05.004.

Blaxter, K.L. 1989. Energy metabolism in animals and man. Cambridge, UK: Cambridge University Press. 336p.

Caballero, M.J.; Izquierdo, M.S.; Kjí­¸rsvik, E.; Fernández, A.J.; Rosenlund, G. 2004. Histological alterations in the liver of sea bream, Sparus aurata L., caused by short-or long-term feeding with vegetable oils. Recovery of normal morphology after feeding fish oil as the sole lipid source. Journal of Fish Diseases, 27(9): 531-541. https://doi.org/10.1111/j.1365-2761.2004.00572.x.

Caputo, L.F.G.; Gitirana, L.B.; Manso, P.P.A. 2010. Técnicas histológicas. In: Molinaro, E.M.; Caputo, L.F.G; Amendoeira, M.R.R. Conceitos e métodos para formação de profissionais em laboratórios de saúde. Rio de Janeiro: Escola Politécnica de Saúde Joaquim Vení­¢ncio. pp.89-188.

Cavalier-Smith, T. 1982. Skeletal DNA and the evolution of genome size. Annual Review of Biophysics and Bioengineering, 11(1): 273í 302.

Chervinski, J. 1982. Environmental physiology of tilapias. In: Pullin, R.V.S.; Lowe-McConnell, R.H. (eds). The Biology and Culture of Tilapias. ICLARM Conference Proceedings No. 7, ICLARM, Manila, Philippines, pp.119-128.

Corrêa, C.F.; Nobrega, R.O.; Mattioni, B.; Block, J.M.; Fracalossi, D.M. 2017. Dietary lipid sources affect the performance of Nile tilapia at optimal and cold, suboptimal temperatures. Aquaculture Nutrition, 23(5): 1016-1026. https://doi.org/10.1111/anu.12469.

Costas, B.; Conceição, L.E.C.; Aragão, C.; Martos, J.A.; Ruiz-Jarabo, I.; Mancera, J.M.; Afonso, A. 2011. Physiological responses of Senegalese sole (Solea senegalensis Kaup, 1858) after stress challenge: effects on non-specific immune parameters, plasma free amino acids and energy metabolism. Aquaculture. 316: 68-76. https://doi.org/10.1016/j.aquaculture.2011.03.011.

El-Khaldi, A. 2010. Effect of different stress factors on some physiological parameters of Nile tilapia (Oreochromis niloticus). Saudi Journal of Biological Sciences. 17(3): 241-246. https://doi.org/10.1016/j.sjbs.2010.04.009.

Elsabagh, M.; Mohamed, R.; Moustafa, E.M.; Hamza, A.; Farrag, F.; Decamp, O.; Dawood. M.A.O.; Eltholth, M. 2018. Assessing the impact of Bacillus strains mixture probiotic on water quality, growth performance, blood profile and intestinal morphology of Nile tilapia, Oreochromis niloticus. Aquaculture Nutrition, 24(6): 1613-1622. https://doi.org/10.1111/anu.12797.

El-Sayed, E.M. 2006. Tilapia culture. CABI publishing. CABI International, Wallingford, Oxford shire, UK. 277p.

Falcon, D.R.; Barros, M.M.; Pezzato, L.E.; Solarte, W.V.N.; Guimarães, I.G. 2008. Leucograma da tilápia-do-Nilo arraçoada com dietas suplementadas com ní­­veis de vitamina C e lipí­­deos submetidos a estresse por baixa temperatura. Ciência Animal Brasileira, 9(3): 543-551.

Fernandes Junior, A.C.; Pezzato, L.E.; Guimarães, I.G.; Teixeira, C.P.; Koch, J.F.A.; Barros, M.M. 2010. Resposta hemática de tilápias-do-Nilo alimentadas com dietas suplementadas com colina e submetidas a estí­­mulo por baixa temperatura. Revista Brasileira de Zootecnia, 39(8): 1619-1625. http://dx.doi.org/10.1590/S1516-359882010000800001.

Freitas, J.M.A. 2015. Desempenho produtivo e respostas hematológicas da tilápia-do-Nilo submetida a diferentes ní­­veis de proteí­­na e condições de estresse. 112f. (Tese de Doutorado. Departamento Medicina Veterinária e Zootecnia, Universidade Estadual Paulista, UNESP). Available at: <https://repositorio.unesp.br/handle/11449/126635> Acessed: March 19, 2019.

Gobi, N.; Vaseeharan, B.; Chen, J.C.; Rekha, R.; Vijayakumar, S.; Anjugam, M.; Iswarya, A. 2018. Dietary supplementation of probiotic Bacillus licheniformis Dahb1 improves growth performance, mucus and serum immune parameters, antioxidant enzyme activity as well as resistance against Aeromonas hydrophila in tilapia Oreochromis mossambicus. Fish & Shellfish Immunology, 74: 501-508. https://doi.org/10.1016/j.fsi.2017.12.066.

Guimarães, I.G.; Pezzato, L.E.; Santos, V.G.; Orsi, R.O.; Barros, M.M. 2014. Vitamin A affects haematology, growth and immune response of Nile tilapia (Oreochromis niloticus, L.), but has not protective effect against bacterial challenge or cold-induced stress. Aquaculture Research, 47(6): 2004-2018. https://doi.org/10.1111/are.12656.

Hrubec, T.C.; Cardinale, J.L.; Smith, S.A. 2000. Hematology and plasma chemistry reference intervals for cultured tilapia (Oreochromis hybrid). Veterinary Clinical Pathology, 29(1): 7-12. https://doi.org/10.1111/j.1939-165X.2000.tb00389.x.

Ibrahem, M.D. 2015. Evolution of probiotics in aquatic world: potential effects, the current status in Egypt and recent prospectives. Journal of Advanced Research, 6(6): 765-791. https://doi.org/10.1016/j.jare.2013.12.004.

Jahangiri, L.; Esteban, M. 2018. Administration of Probiotics in the Water in Finfish Aquaculture Systems: A Review. Fishes, 3(3): 33. https://doi.org/10.3390/fishes3030033

Jatobá, A.; Vieira, F. Do N.; Neto, C.B.; Silva, B.C.; Mourií­±o, J.L.P.; Jerônimo, G.T.; Martins, M.L. 2008. Utilização de bactérias ácido-lácticas isoladas do trato intestinal de tilápia do Nilo como probiótico. Pesquisa Agropecuária Brasileira, 43(9): 1201-1207. http://dx.doi.org/10.1590/S0100-204X2008000900015.

Jesus, G.F.A. 2014. Weissella cibaria e sua ação probiótica no trato intestinal de surubins hí­­bridos. 90f. (Dissertação de Mestrado, Universidade Federal de Santa Catarina-UFSC). Available at: <https://repositorio.ufsc.br/xmlui/handle/123456789/129543> Acessed: March 19, 2019.

Khati, A.; Chauhan, R.S.; Nazir, I.; Arya, P. 2018. Improved fish health: Key to successful aquaculture. Journal of Entomology and Zoology Studies, 6(2): 898-902.

Kubitza, F. 2000. Tilápia: tecnologia e planejamento na produção comercial. 1ª. Edição, Jundiaí­­. 285p.

Martins, M.; Pilarsky, F.; Onaka, E.; Nomura, D.; Ribeiro, K., Myiazaki, D.; Castro, M. De P.; Malheiros, E. 2004. Hematologia e resposta inflamatória aguda em Oreochromis niloticus (Osteichthyes: Cichlidae) submetida aos estí­­mulos único e consecutivo de estresse de captura. Boletim do Instituto de Pesca, 30(1): 71-80.

Mazeaud, M.M.; Mazeaud, F.; Donaldson, E.M. 1977. Primary and secondary effects of stress in fish: some new data with a general review. Transactions of the American Fisheries Society, 106(3): 201-212. https://doi.org/10.1577/1548-8659(1977)106<201:PASEOS>2.0.CO;2.

Mello, H.D.; Moraes, J.; Niza, I.G.; Moraes, F.R.D.; Ozório, R.; Shimada, M.T.; Claudiano, G. 2013. Efeitos benéficos de probióticos no intestino de juvenis de Tilápia-do-Nilo. Pesquisa Veterinária Brasileira, 33(6): 724-730.

Merrifield, D.L.; Dimitroglou, A.; Foey, A.; Davies, S.J.; Baker, R.T.; Bogwald, J.; Ringo, E. 2010. The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture, 302(1-2): 1-18. https://doi.org/10.1016/j.aquaculture.2010.02.007.

Nakandakare, I.B.; Iwashita, M.K.P.; Dias, D.D.C.; Tachibana, L.; Ranzani-Paiva, M.J.T.; Romagosa, E. 2013. Incorporação de probióticos na dieta para juvenis de tilápias-do-Nilo: parí­¢metros hematológicos, imunológicos e microbiológicos. Boletim do Instituto de Pesca, 39(2): 121-135.

Neumann, F.R.; Nurse, P. 2007. Nuclear size control in fission yeast. The Journal of Cell Biology, 179(4), 593í 600. https://doi.org/10.1083/jcb.200708054.

Ni, J.; Yan, Q.; Yu, Y.; Zhang, T. 2014. Factors influencing the grass carp gut microbiome and its effect on metabolism. FEMS Microbiology Ecology, 87(3): 704-714. https://doi.org/10.1111/1574-6941.12256.

Noffs, A.P.; Tachibana, L.; Santos, A.A.; Ranzani-Paiva, M.J.T. 2015. Common snook fed in alternate and continuous regimens with diet supplemented with Bacillus subtilis probiotic. Pesquisa Agropecuária Brasileira, 50(4): 267-272. https://doi.org/10.1590/S0100-204X2015000400001.

Ostaszewska, T.; Dabrowski, K.; Kwasek, K.; Verri, T.; Kamaszewski, M., Sliwinski, J.; Napora-Rutkowski, L. 2011. Effects of various diet formulations (experimental and commercial) on the morphology of the liver and intestine of rainbow trout (Oncorhynchus mykiss) juveniles. Aquaculture Research, 42(12): 1796-1806. https://doi.org/10.1111/j.1365-2109.2010.02779.x.

Popma, T.L.; Lovshin, L.L. 1996. World wide prospects for commercial production of tilapia. Research and Development Series, 41: 1-23. Available at: http://hdl.handle.net/11200/4157.

Ranzani-Paiva, M.J.T.; Pádua, S.B.; Tavares-Dias, M.; Egami, M.I. 2013. Métodos para análise hematológica em peixes. Eduem: Maringá. 140p.

Rebouças, P.M.; Lima, L.R.; Dias, I.F.; Barbosa Filho, J.A.D. 2014. Influência da oscilação térmica na água da piscicultura. Journal of Animal Behaviour and Biometeorology, 2(2): 35-42. https://dx.doi.org/10.14269/2318-1265.v02n02a01.

Reda, R.; Selim, K. 2015. Evaluation of Bacillus amyloliquefaciens on the growth performance, intestinal morphology, hematology and body composition of Nile tilapia, Oreochromis niloticus. Aquaculture International, 21(1): 203-217. https://doi.org/10.1007/s10499-014-9809-z.

Rodrigues, R.A.; Saturnino, K.C.; Fernandes, C.E. 2017. Liver histology and histomorphometry in hybrid sorubim (Pseudoplatystoma reticulatum í­"” Pseudoplatystoma corruscans) reared on intensive fish farming. Aquaculture Research, 48(9): 5083-5093. https://doi.org/10.1111/are.13325.

Rotta, M.A. 2003. Aspectos da fisiologia e estrutura do sistema digestivo dos peixes relacionados í­Â  piscicultura. Embrapa Pantanal-Documentos (INFOTECA-E). 48p.

Round, J.L.; Mazmanian, S.K. 2009. The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology, 9(5): 313-323. https://doi.org/10.1038/nri2515.

Sardella, B.A.; Cooper, J.; Gonzalez, R.J.; Brauner, C.J. 2004. The effect of temperature on juvenile Mozambique tilapia hybrids (Oreochromis mossambicus x O. urolepis hornorum) exposed to full-strength and hypersaline seawater. Comparative Biochemistry and Physiology. Part A: Molecular & Integrative Physiology, 137(4): 621-629. https://doi.org/10. 1016/j.cbpb.2003.12.003.

Sekirov, I.; Finlay, B.B. 2009. The role of the intestinal microbiota in enteric infection. The Journal of Physiology, 587(17): 4159-4167. https://doi.org/10.1113/jphysiol.2009. 172742.

Semova, I.; Carten, J.D.; Stombaugh, J.; Mackey, L.C.; Knight, R.; Farber, S.A.; Rawls, J.F. 2012. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host & Microbe, 12(3), 277-288. https://doi.org/10.1016/j.chom.2012.08.003.

Signor, A.; Pezzato, L.E.; Falcon, D.R.; Guimarães, I.G.; Barros, M.M. 2010. Parí­¢metros hematológicos da tilápia-do-Nilo: efeito da dieta suplementada com levedura e zinco e do estí­­mulo pelo frio. Ciência Animal Brasileira, 11(3): 509-519. https://doi.org/ 10.5216/cab.v11i3.6016.

Silva, D.J.; Queiroz, A.C. 2002. Análises de alimentos: métodos quí­­micos e biológicos 3a ed. Editora UFV, Viçosa, MG. 235p.

Silva, T.F.A. 2014. Efeito probiótico do Bacillus amyloliquefaciens no desempenho produtivo e nos parí­¢metros hematológicos, morfométricos e ultraestruturais do intestino de tilápias-do-Nilo cultivadas em tanque-rede. 36f. (Dissertação de Mestrado. Centro de Aquicultura da UNESP-CAUNESP). Available at: <http://hdl.handle.net/11449/131971>. Accessed: March 19, 2019.

Tavares-Dias, M., Moraes, F.R. 2004. Hematologia de Peixes Teleósteos. Villimpress Complexo Gráfico, Ribeirão Preto, USP. 144p.

Tessaro, L.; De Toledo, C.P.R.; Neumann, G.; Krause, R.A.; Meurer, F.; Natali, M.R.M.; Bombardelli, R.A. 2014. Animal performance and reproductive aspects of female Rhamdia quelen fed on different levels of digestible energy. Aquaculture Research, 45(9): 1425-1433. https://doi.org/10.1111/are.12087.

Verschuere, L.; Rombaut, G.; Sorgeloos, P.; Verstraete, W. 2000. Probiotic bacteria as biological control agents in aquaculture. Microbiology and Molecular Biology Reviews, 64(4): 655-671. https://doi.org/10.1128/mmbr.64.4.655-671.2000.

Vieira, B.B.; Pereira, E.L. 2016. Potencial dos probióticos para o uso na aquicultura. Revista da Universidade Vale do Rio Verde, 14 (2): 1223-1241.

Volkoff, H.; Butt, R.L. 2019. Gut microbiota and energy homeostasis in fish. Frontiers in Endocrinology, 10: 9. https://doi.org/10.3389/fendo.2019.00009.

Wang, M.; Liu, G.; Lu, M.; Ke, X.; Liu, Z.; Gao, F.; Yu, D. 2017. Effect of Bacillus cereus as a water or feed additive on the gut microbiota and immunological parameters of Nile tilapia. Aquaculture Research, 48(6): 3163-3173. https://doi.org/10.1111/are.13146.

Webster, M.; Witkin, K.L.; Cohen-Fix, O. 2009. Sizing up the nucleus: Nuclear shape, size and nuclear-envelope assembly. Journal of Cell Science, 122(10): 1477í 1486. https://doi.org/10.1242/jcs.037333.

Wold, P.A.; Hoehne-Reitan, K.; Cahu, C.L.; Infante, J.Z.; Rainuzzo, J.; Kjorsvik, E. 2009. Comparison of dietary phospholipids and neutral lipids: Effects on gut, liver and pancreas histology in Atlantic cod (Gadus morha L.) larvae. Aquaculture Nutrition, 15(1): 73-84. https://doi.org/10.1111/j.1365-2095.2008.00569.x.

Ye, J.D.; Wang, K.; Li, F.D.; Sun, Y.Z. 2011. Single or combined effects of fructo-and mannan oligosaccharide supplements and Bacillus clausii on the growth, feed utilization, body composition, digestive enzyme activity, innate immune response and lipid metabolism of the Japanese flounder Paralichthys olivaceus. Aquaculture Nutrition, 17(4): 902-911. https://doi.org/10.1111/j.1365-2095.2011.00863.x.

Xia, Y.; Wang.; Gao, F.; Lu, M.; Chen, G. 2019. Effects of dietary probiotic supplementation on the growth, gut health and disease resistance of juvenile Nile tilapia (Oreochromis niloticus). Animal Nutrition. 6: 69-79. https://doi.org/10.1016/j.aninu.2019.07.002.

Zhou, T.; Gui, L.; Liu, M.; Li, W.; Hu, P.; Duarte, D.F.; Chen, L. 2018. Transcriptomic responses to low temperature stress in the Nile tilapia, Oreochromis niloticus. Fish & Shellfish Immunology, 84: 1145-1156. https://doi.org/10.1016/j.fsi.2018.10.023.

Downloads

Publicado

2020-10-07

Edição

Seção

Artigo cientí­fico

Artigos mais lidos pelo mesmo(s) autor(es)

<< < 1 2