Enriquecimento de Artemia sp. com probiótico autóctone em diferentes níveis na larvicultura de piauçu Megaleporinus macrocephalus

Autores

Palavras-chave:

Growth performance, Live food, Sanity, Microbiology, Pathogen

Resumo

A pesquisa investigou o efeito da suplementação dietética com Artemia sp. enriquecida com o probiótico autóctoneEnterococcus faecium no desempenho do crescimento, modulação da microbiota, morfologia intestinal e resistência a bactérias patogênicas em larvas de Megaleporinus macrocephalus. O estudo avaliou quatro tratamentos (C: sem
probióticos; T1: 1 × 104; T2: 1 × 106; e T3: 1 × 108 UFC·mL-1) em quadruplicata. As larvas (n = 160; peso = 5,3 ± 2,3 mg e comprimento = 3,73 ± 0,4 mm) foram distribuídas em recipientes de 16 L na densidade de 10 larvas·L-1 por 20 dias. Desempenho produtivo, sobrevivência, microbiologia e histologia intestinal foram medidos. As larvas também foram submetidas a desafio agudo contra a bactéria patogênica Aeromonas hydrophila. Os resultados mostraram que a suplementação com 1 × 108 UFC·mL-1 promoveu maior ganho de comprimento (13,78 ± 0,40 cm) e peso total
(0,08 ± 0,002 g), maior contagem de bactérias lácticas e menor de heterotróficos totais nos intestinos (7,11 ± 0,30; 0,12 ± 0,09 log UFC·g-1, respectivamente) e maiores vilosidades (0,26 ± 0,03 μm). As dietas contendo probióticos influenciaram a resistência dos animais à infecção aguda, com menor mortalidade acumulada em T3 (33,33%±11,54%) e maior em C+ (93,33% ± 11,54%). Assim, a suplementação probiótica com a bactéria autóctone E. faecium (1 × 108 UFC·mL-1) proporciona melhora zootécnica, aumento de vilosidades e maior resistência a infecções.

Referências

Abe, H.A.; Dias, J.A.R.; Cordeiro, C.A.M.; Ramos, F.M.; Fujimoto, R.Y. 2015. Pyrrhulina brevis (Steindachner, 1876) como uma nova opção para a piscicultura ornamental nacional: larvicultura. Boletim do Instituto de Pesca, 41(1):113-122.

Allameh, S.K.; Noaman, V.; Nahavandi, R. 2017. Effects of probiotic bacteria on fish performance. Advanced Techniques in Clinical Microbiology, 1(2): 11.

Angeletti, S. 2017. Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology. Journal of Microbiological Methods, 138:20-29. https://doi.org/10.1016/j.mimet.2016.09.003

Arrieta, M.C.; Stiemsma, L.T.; Amenyogbe, N.; Brown, E.M.; Finlay, B. 2014. The intestinal microbiome in early life: health and disease. Frontiers Immunology, 5: 427. https://doi.org/10.3389/fimmu.2014.00427

Avella, M.A.; Olivotto, I.; Silvi, S.; Place, A.R..; Carnevali, O. 2010. Effect of dietary probiotics on clownfish: a molecular approach to defne how lactic acid bacteria modulate development in a marine fish. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 298(2): R359-R371.https://doi.org/10.1152/ajpregu.00300.2009

Azevedo, R.V.; Fosse-Filho, J.C.; Pereira, S.L.; Andrade, D.R.; Júnior, V.M. 2016. Prebiótico, probiótico esimbiótico para larvas de Trichogaster leeri (Bleeker, 1852, Perciformes, Osphronemidae). Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 68(3): 795-804. https://doi.org/10.1590/1678-4162-8580

Barros, F.A.L.; Silva, L.A.; Dias, J.A.R.; Abe, H.A.; Paixão, P.E.G.; Sousa, N.C.; Cordeiro, C.A.M.; Fujimoto, R.Y.2022.In vitro selection of autochthonous bacterium with probiotic potential for the neotropical fish piauçu Megaleporinus macrocephalus. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 74(2): 327-337. https://doi.org/10.1590/1678-4162-12404

Bhaheerathan, J.I.; Saravana, B.P.; Chinnasamy, D.; Thangaraj, M.; Ramasamy, K.; Thirunavukkarasu,M.; Madhayan,K.; Paramasivam, P. 2020. Growth and survival promotion of a probiotic bacteriumEnterococcus durans enriched Artemia nauplii on the prawn Macrobrachium rosenbergii. GSC Biological and Pharmaceutical Sciences, 12(1): 87-101. https://doi.org/10.30574/gscbps.2020.12.1.0201

Chauhan, A.; Singh, R. 2019. Probiotics in aquaculture: a promising emerging alternative approach. Symbiosis, 77: 99-113. https://doi.org/10.1007/s13199-018-0580-1

Chung, H.; Pamp, S.J.; Hill, J.A.; Surana, N.K.; Edelman, S.M.; Troy, E.B.; Reading, N.C.; Villablanca, E.J.; Wang, S.; Mora, J.R.; Umesaki, Y.; Mathis, D.; Benoist, C.; Relman, D.A.; Kasper, D.L. 2012. Gut Immune Maturation Depends on Colonization with a Host-Specific Microbiota. Cell, 149(7): 1578-1593. https://doi.org/10.1016/j.cell.2012.04.037

Comabella, Y.; Hernández Franyutti, A.; Hurtado, A.; Canabal, J.; García-Galano, T. 2013. Ontogenetic development of the digestive tract in Cuban gar (Atractosteus tristoechus) larvae. Reviews in Fish Biology and Fisheries, 23: 245-260. https://doi.org/10.1007/s11160-012-9289-z

Deng, Y.; Verdegem, M.C.; Eding, E.; Kokou, F. 2022. Effect of rearing systems and dietary probiotic supplementation on the growth and gut microbiota of Nile tilapia (Oreochromis niloticus) larvae. Aquaculture, 546: 737297. https://doi.org/10.1016/j.aquaculture.2021.737297

Dias, J.A.R.; Abe, H.A.; Sousa, N.C.; Couto, M.V.; Cordeiro, C.A.; Meneses, J.O.; Fujimoto, R.Y. 2018. Dietarysupplementation with autochthonous Bacillus cereus improves growth performance and survival in tambaqui Colossoma macropomum. Aquaculture Research, 49(9):3063-3070.https://doi.org/10.1111/are.13767

Dias, J.A.R.; Abe, H.A.; Sousa, N.C.; Silva, R.D.F.; Cordeiro, C.A.M.; Gomes, G.F.E.; Ready, J.S.; Mouriño, J.L.P.; Martins, M.L.; Carneiro, P.C.F.; Maria, N.A.; Fujimoto, R.Y. 2019. Enterococcus faecium as potential probiotic for ornamental neotropical cichlid fish, Pterophyllum scalare (Schultze, 1823). Aquaculture Inernational, 27: 463-474.https://doi.org/10.1007/s10499-019-00339-9

Dias, J.A.R.; Alves, L.L.; Barros, F.A.L.; Cordeiro, C.A.M.; Meneses, J.O.; Santos, T.B. R.; Santos, C.C-M.; Paixão, P.E.G.; Filho, R.M.N.; Martins, M.L.; Pereira, S.A.; Mouriño, J.L.P.; Diniz, L.E.C.; Maria, A.N.; Carneiro, P.C.F.; Fujimoto R.Y. 2022. Comparative effects of autochthonous single-strain and multi-strain probiotics on the productive performance and disease resistance in Colossoma macropomum (Cuvier,1818). Aquaculture Research, 53(11): 4141-4154. https://doi.org/10.1111/are.15916

Evans, A.S. 1976. Causation and disease: the Henle-Koch postulates revisited. The Yale Journal of Biology and Medicine, 49(2): 175-195.

Ghoname, R.M.; El-Sayed, H.S.; Ghozlan, H.A.; Sabry, S.A. 2020. Application of probiotic bacteria for the improvement of sea bream (Sparus aurata) larval production. Egyptian Journal of Aquatic Biology and Fisheries, 24(1): 371-398. https://doi.org/10.21608/EJABF.2020.70859

Ghorbani Vaghei, R.; Shenavar Masouleh, A.R.; Alipour, A.R.; Yeganeh, H. 2019. Effects of Artemia nauplii enrichment with a bacterial species (Weissiella koreensis) on growth performance and survival rate of stellate sturgeon larvae (Acipenser stellatus). Journal of Survey Fisheries Science, 5(2): 1-10. https://10.18331/SFS2019.5.2.1

Gonçalves Júnior, L.P.; Pereira, S.L.; Matielo, M.D.; Mendonça, P.P. 2013. Efeito da densidade de estocagem no desenvolvimento inicial do acará-bandeira (Pterophyllum scalare). Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 65(4): 1176-1182. https://doi.org/10.1590/S0102-09352013000400033

He, S.; Ran, C.; Qin, C.; Li, S.; Zhang, H.; de Vos, W.M.; Ringo, E.; Zhou, Z. 2017. Anti-infective effect of adhesive probiotic Lactobacillus in fish is correlated with their spatial distribution in the intestinal tissue. Scientific Reports, 7: 13195. https://doi.org/10.1038/s41598-017-13466-1

Hoseinifar, S.H.; Sun, Y.Z.; Wang, A.; Zhou, Z. 2018. Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Frontiers in Microbiology, 9: 2429. https://doi.org/10.3389/fmicb.2018.02429

Hossain, M.K.; Ishak, S.D.; Iehata, S., Noordiyana, M.N.; Kader, M.A.; Abol-Munafi, A.B. 2022. Effect of intestinal autochthonous Enterococcus faecalis on the growth performance, gut morphology of Malaysian mahseer (Tor tambroides) and protection against Aeromonas hydrophila. International Aquatic Research, 14(1): 1-12 https://doi.org/10.22034/IAR.2022.1945276.1213

Ina-Salwany, M.Y.; Al-saari, N.; Mohamad, A.; Mursidi, F.A.; Mohd-Aris, A.; Amal, M.N.A.; Kasai, H.; Mino, S.; Sawabe. T.; Zamri-Saad, M. 2019. Vibriosis in fish: a review on disease development and prevention. Journal of Aquatic Animal Health, 31(1): 3-22. https://doi.org/10.1002/aah.10045

Jatobá, A.; Jesus, G.F. 2022. Autochthonous and allochthonous lactic acid bacteria: action on the hematological and intestinal microbiota for two species of Astyanax genus. Anais da Academia Brasileira de Ciências, 94(Suppl. 4): e20201611. https://doi.org/10.1590/0001-3765202220201611

Jatobá, A.; Pereira, M.O.; Rodhermel, J.C.B. 2020. Hematological profile of Astyanax bimaculatus underdifferent offer of Lactobacillus sp. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 72(3): 871-878. https://doi.org/10.1590/1678-4162-10832

Jatobá, A.; Vieira, F.D.N.; Neto, C.B.; Silva, B.C.; Mourino, J.L.P.; Jeronimo, G.T.; Dotta, G.; Martins, M.L. 2008. Lactic-acid bacteria isolated from the intestinal tract of Nile tilapia utilized as probiotic. Pesquisa Agropecuária Brasileira, 43(9): 1201-1207. https://doi.org/10.1590/S0100-204X2008000900015

Jomori, R.K.; Luz, R.K.; Takata, R.; Fabregat, T.E.H.P.; Portella, M.C. 2013. Água levemente salinizada aumenta a eficiência da larvicultura de peixes neotropicais. Pesquisa Agropecuária Brasileira, 48(8): 809-815. https://doi.org/10.1590/S0100-204X2013000800001

Khalkhali, S.; Mojgani, N. 2017. Enterococcus faecium; a suitable probiotic candidate for modulation of immune responses against pathogens. International Journal of Basic Science in Medicine, 2(2): 77-82. https://doi.org/10.15171/ijbsm.2017.15

Le Cren, E.D. 1951. The length–weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). Journal of Animal Ecology, 20(2): 201-219. https://doi.org/10.2307/1540

Li, X.; Ringø, E.; Hoseinifar, S.H.; Lauzon, H.L.; Birkbeck, H.; Yang, D. 2019. The adherence and colonization of microorganisms in fish gastrointestinal tract. Reviews in Aquaculture, 11(3): 603-618. https://doi.org/10.1111/raq.12248

Lima, K.S.; Santos Cipriano, F.; Oliveira Júnior, F.M.; Tonini, W.C.T.; Souza, R.H.B.; Simões, I.G.P.C.; Braga, L.G.T. 2015. Performance and hematological variables of piavuçu whose diets were supplemented with phytobiotic and probiotic additives. Semina: Ciências Agrárias, 36(4): 2881-2891. https://doi.org/10.5433/1679-0359.2015v36n4p2881

Lobo, C.; Martín, M.V.; Moreno-Ventas, X.; Tapia-Paniagua, S.T.; Rodríguez, C.; Moriñigo, M.A.; La Banda, I.G. 2018. Shewanella putrefaciens Pdp11 probiotic supplementation as enhancer of Artemia n-3 HUFA contents and growth performance in Senegalese sole larviculture. Aquaculture Nutrition, 24(1): 548-561. https://doi.org/10.1111/anu.12587

Masduki, F.; Zakaria, T.; Min, C.C.; Karim, M. 2020. Evaluation of Enterococcus hirae LAB3 as potential probiont against Vibrio harveyi in Artemia nauplii and Asian seabass larvae (Lates calcarifer) cultures. Journal Environmental Biology, 41(5): 1153-1159. https://doi.org/10.22438/jeb/41/5(SI)/MS_06

Moraes, A.V.; Pereira, M.; Moraes, K.N.; Rodrigues-Soares, J.P.; Jesus, G.F.A.; Jatobá, A. 2018. Autochthonous probiotic as growth promoter and immunomodulator for Astyanax bimaculatus cultured in water recirculation system. Aquaculture Research, 49(8): 2808-2814. https://doi.org/10.1111/are.13743

Mouriño, J.L.P.; Vieira, F.N.; Jatobá, A.; Silva, B.C.; Pereira, G.V.; Jesus, G.F.A.; Ushizima, T.T.; Seiffert, W.Q.;

Martins, M.L. 2017. Symbiotic supplementation on the hemato-immunological parameters and survivalof the hybrid surubim after challenge with Aeromonas hydrophila. Aquaculture Nutrition, 23(2): 276-284. https://doi.org/10.1111/anu.12390

Nikapitiya, C.; Dananjaya, S.H.S.; Silva, B.C.J.; Heo, G.J.; Oh, C.; Zoysa, M.; Lee, J. 2018. Chitosan nanoparticles: A positive immune response modulator as display in zebrafish larvae against Aeromonas hydrophila infection. Fish & Shellfish Immunology, 76: 240-246. https://doi.org/10.1016/j.fsi.2018.03.010

Oliveira, F.C.; Kasai, R.Y.D.; Fernandes, C.U.; Souza, W.S.; Campos, C.M. 2022. Probiotic, prebiotic and synbiotics supplementation on growth performance and intestinal histomorphometryPseudoplatystoma reticulatum larvae. Journal of Applied Aquaculture, 34(2): 279-293. https://doi.org/10.1080/10454438.2020.1841060

Pereira, T.S.B.; Boscolo, C.N.P.; Batlouni, S.R., 2020. Use of 17β-estradiol for Leporinus macrocephalus feminization. Boletim do Instituto de Pesca, 46(2): e547.https://doi.org/10.20950/16782305.2020.46.2.547

Poolsawat, L.; Li, X.; He, M.; Ji, D.; Leng, X. 2019. Clostridium butyricum as probiotic for promoting growth performance, feed utilization, gut health and microbiota community of tilapia (Oreochromis niloticus × O. aureus). Aquaculture Nutrition, 26(3): 657-670. https://doi.org/10.1111/anu.13025

Pramod, P.K.; Ramachandran, A.; Sajeevan, T.P.; Thampy, S.; Pai, S.S., 2010. Comparative efficacy of MS-222 and benzocaine as anaesthetics under simulated transport conditions of a tropical ornamental fish Puntius filamentosus (Valenciennes). Aquaculture Research, 41(2): 309-314.https://doi.org/10.1111/j.1365-2109.2009.02333.x

Ramirez, J.L.; Birindelli, J.L.O.; Galetti, P. 2017. A new genus of Anostomidae (Ostariophysi: Characiformes): Diversity, phylogeny and biogeography based on cytogenetic, molecular and morphological data. Molecular Phylogenetics and Evolution, 107: 308-323. https://doi.org/10.1016/j.ympev.2016.11.012

Ringø, E.; Van Doan, H.; Lee, S.H.; Soltani, M.; Hoseinifar, S.H.; Harikrishnan, R.; Song, S.K. 2020. Probiotics, lactic acid bacteria and bacilli: interesting supplementation for aquaculture. Journal of Applied Microbiology, 129(1):116-136. https://doi.org/10.1111/jam.14628

Samat, N.A.; Yusoff, F.M.; Rasdi, N.W.; Karim, M. 2021. The Efficacy of Moina micrura Enriched with Probiotic Bacillus pocheonensis in Enhancing Survival and Disease Resistance of Red Hybrid Tilapia (Oreochromis spp.) Larvae. Antibiotics, 10(8): 989. https://doi.org/10.3390/antibiotics10080989

Silva, D.M.; Valente, L.M.P.; Sousa-Pinto, I.; Pereira, R.; Pires, M.A.; Seixas, F.; Rema, P. 2015. Evaluation of IMTA- produced seaweeds (Gracilaria, Porphyra, and Ulva) as dietary ingredients in Nile tilapia, Oreochromis niloticus L., juveniles. Effects on growth performance and gut histology. Journal of Applied Phycology, 27: 1671-1680. https://doi.org/10.1007/s10811-014-0453-9

Soares Junior, M.S.; Caliari, M.; Pereira, D.E.P. 2013. Effect of soybean inclusion in extruded rations on performance of juvenile Piavuçu (Leporinus macrocephalus L.). Ciência Animal Brasileira, 14(4): 399-405. https://doi.org/10.5216/cab.v14I4.15834

Sousa, N.C.; Couto, M.V.S.; Abe, H.A.; Paixão, P.E.G.; Cordeiro, C.A.M.; Lopes, E.M.; Ready, J.R.; Jesus, G.F.A.; Martins, M.L.; Mouriño, J.L.P.; Carneiro, P.F.; Maria, A.N.; Fujimoto, R.Y. 2019. Effects of an Enterococcus faecium based probiotic on growth performance and health of Pirarucu, Arapaima gigas. Aquaculture Research, 50(12): 3720-3728. https://doi.org/10.1111/are.14332

Sousa, N.C.; Silva, J.A.; Lopes, E.M.; Santos, A.F.L.; Barros, F.A.B.; Cordeiro, C.A.M.; Paixão, P.E.G; Santos Medeiros, E.; Souza, J.C.N.; Couto, M.V.S. 2020. Enriched Artemia Nauplii with Commercial Probiotic in the Larviculture of Angelfish Pterophyllum scalare Lichtenstein (1823). Journal of Fisheries Science, 2(1): 17-21. https://doi.org/10.30564/jfsr.v2i1.1569

Stephens, W.Z.; Burns, A.R.; Stagaman, K.; Wong, S.; Rawls, J.F.; Guillemin, K.; Bohannan, B.J. 2016. The composition of the zebrafish intestinal microbial community varies across development. Journal ISME, 10: 644-654. https://doi.org/10.1038/ismej.2015.140

Standen, B.T.;Peggs, D.L.; Rawling, M.D.;Foey, A.; Davies, S.J.; Santos, G.A.; Merrifield, D.L. 2016.Dietary administration of a commercial mixed-species probiotic improves growth performance and modulates the intestinal immunity of tilapia, Oreochromis niloticus. Fish & Shellfish Immunology, 49: 427-435. https://doi. org/10.1016/j.fsi.2015.11.037

Sun, Y.Z.; Yang, H.L.; Huang, K.P.; Ye, J.D.; Zhang, C.X. 2013. Application of autochthonous Bacillus bioencapsulated in copepod to grouper Epinephelus coioides larvae. Aquaculture, 392-395: 44-50. https://doi.org/10.1016/j.aquaculture.2013.01.037

Suphoronski, S.A.; Souza, F.P.; Chideroli, R.T.; Mantovani Favero, L.; Ferrari, N.A.; Ziemniczak, H.M.; Gonçalves, D.D.; Lopera Barrero, N.M.; Pereira, U.P. 2021. Effect of Enterococcus faecium as a Water and/or Feed Additive on the Gut Microbiota, Hematologic and Immunological Parameters, and Resistance Against Francisellosis and Streptococcosis in Nile Tilapia (Oreochromis niloticus). Frontiers in Microbiology, 12: 743957. https://doi.org/10.3389/fmicb.2021.743957

Tataje, D.R.; Zaniboni-Filho, E. 2010. Cultivo de piapara, piauçu, piava e piau: gênero Leporinus. In: Baldisserotto. B.; Gomes, L.C. (Eds.). Espécies nativas para piscicultura no Brasil. Santa Maria, Editora UFSM, pp. 73-99.

Tavares-Dias, M.; Moraes, F.R.; Imoto, M.E. 2008. Hematological parameters in two neotropical freshwater teleost, Leporinus macrocephalus (Anostomidae) and Prochilodus lineatus (Prochilodontidae). Bioscience Journal, 24(3): 96-101. Urdaci, M.; Pinchuk I. 2004. Antimicrobial activity ofBacillus probiotics-bacterial spore formers. In: Ricca, E.; Henriques, A.O.; Cutting, S.M. (Eds.). Bacterial spore formers: Probiotics and emerging applications. Norfolk, Horizon Bioscience, pp. 171-182.

Vázquez-Silva, G.; Castro-Mejía, J.J.; Sánchez de la Concha, B.; González-Vázquez, R.; Mayorga-Reyes, L.; Azaola-Espinosa, A. 2016. Bioencapsulation of Bifidobacterium animalis and Lactobacillus johnsonii in Artemia franciscana as feed for charal (Chirostoma jordani) larvae. Revista Mexicana de Ingeniería Química, 15(3): 809-818.

Vieira, F.N.; Jatobá, A.; Mouriño, J.L.P.; Vieira, E.A.; Soares, M.; Silva, B.C.; Seiffert, W.Q.; Martins, M.L.; Vinatea, L.A. 2013. In vitro selection of bacteria with potential for use as probiotics in marine shrimp culture. Pesquisa Agropecuária Brasileira, 48(8): 998-1004. https://doi. org/10.1590/S0100204X2013000800027

Yamashita, M.M.; Ferrarezi, J.V.; Pereira, G.V.; Júnior, G.B.; Silva, B.C.; Pereira, S.A.; Martins, M.L.; Mouriño, J.L.P. 2020. Autochthonous vs allochthonous probiotic strains to Rhamdia quelen. Microbial Pathogenesis, 139: 103897. https://doi.org/10.1016/j.micpath.2019.103897

Yeganeh Rastekenari, H.; Kazami, R.; Shenavar Masouleh, A.; Banavreh, A.; Saltanat Lashgari, S.N.; Hassani, M.H.S.; Vaghei, R.G.; Roudposhti, M.A.; Hallajian, A. 2021. Lactococcus lactis and Weissella confusa in the diet of fingerlings great sturgeon, Huso huso: effects on growth performance, feed efficiency, haematological parameters, immune status and intestinal morphology. AquacultureResearch, 52(8): 3687-3695. https://doi.org/10.1111/are.15213

Downloads

Publicado

2023-09-15

Edição

Seção

Artigo cientí­fico

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 > >>