Privação alimentar e crescimento compensatório em juvenis de piava, Leporinus obtusidens

Autores

  • Alex Pires de Oliveira NUÑER Universidade Federal de Santa Catarina (UFSC), Aquaculture Department, Laboratory of Freshwater Fish Biology and Cultivation http://orcid.org/0000-0002-4682-3307
  • Leonardo Schorcht Bracony Porto FERREIRA Universidade Federal de Santa Catarina (UFSC), Aquaculture Department, Laboratory of Freshwater Fish Biology and Cultivation

Palavras-chave:

hiperfagia, jejum, modelo lipostático, realimentação

Resumo

O crescimento e a composição corporal de juvenis de Leporinus obtusidens (32,0 ± 8,0 g; 137,3 ± 11,9 mm) foram avaliados em condição de privação alimentar seguida por realimentação. Os peixes foram estocados em tanques de 130-L (15 peixes tanque-1), mantidos em 26,6 ± 0,3°C e alimentados com ração comercial (42% de proteí­­na bruta). Quatro regimes de alimentação (dias de alimentação até a saciedade í­"” dias sem alimentação) foram avaliados: controle (144F:0D), 1D (1F:1D), 6D (6F:6D) ou 12D (12F:12D). O maior crescimento em ganho em peso e taxa de crescimento foi no controle. Os peixes dos tratamentos 1D, 6D e 12D cresceram 73, 64 e 65% do peso dos peixes do tratamento controle, respectivamente. O consumo alimentar diário total foi menor em 12D (1,02 ± 0,06 g) quando comparado ao obtido no controle (1,28 ± 0,02 g). A umidade da composição corporal dos peixes foi maior no controle, mas os demais parí­¢metros não foram significativamente diferentes. Leporinus obtusidens apresentou crescimento compensatório parcial, e seu padrão de desempenho produtivo e composição corporal final poderiam ser ajustados ao modelo lipostático, no qual se prevê que, durante a privação alimentar, as reservas energéticas são mobilizadas para a manutenção do metabolismo, resultando em perda de peso, enquanto na realimentação, a alocação dos nutrientes é utilizada na restauração das reservas energéticas, diminuindo a velocidade de crescimento.

Referências

ABOLFATHI, M.; HAJIMORADLOO, A.; GHORBANI, R.; ZAMANI, A. 2012 Effect of starvation and
refeeding on digestive enzyme activities in juvenile roach, Rutilus rutilus caspicus. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 161(2): 166-173.

ALI, M. and WOOTTON, R.J. 2001 Capacity for growth compensation in juvenile three-spined
sticklebacks experiencing cycles of food deprivation. Journal of Fish Biology, 58(6): 1531-1544.

ALI, M.; NICIEZA, A.; WOOTTON, R.J. 2003 Compensatory growth in fishes: a response to
growth depression. Fish and Fisheries, 4(2): 147-190.

AOAC - ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS. 1999 Official methods of analysis.
Association of Official Analytical Chemists, Inc. 15th Edition. Washington, USA. 1298p

BLANCKENHORN, W.U. 2005 Behavioral causes and consequences of sexual size dimorphism.
Ethology, 111(11): 977-1016.

BOSWORTH, B.G. and WOLTERS, W. 2005 Effects of short-term feed restriction on production,
processing and body shape traits in marketweight channel catfish, Ictalurus punctatus (Rafinesque). Aquaculture Research, 36(4): 344-351.

CARLSON, S.M.; HENDRY, A.P.; LETCHER, B.H. 2004 Natural selection acting on body size,
growth rate and compensatory growth: an empirical test in a wild trout population. Evolutionary Ecology Research, 6: 955-973.

COOK, J.T.; SUTTERLIN, A.M.; MCNIVEN, M.A. 2000 Effect of food deprivation on oxygen
consumption and body composition of growthenhanced transgenic Atlantic salmon (Salmo
salar). Aquaculture, 188(1-2): 47-63.

DOBSON, S.H. and HOLMES, R.M. 1984 Compensatory growth in the rainbow trout,
Salmo gairdneri Richardson. Journal of Fish Biology, 25(6): 649-656.

GAGLIANO, M. and MCCORMICK, M.I. 2007 Compensating in the wild: is flexible growth the
key to early juvenile survival? Oikos, 116(1): 111-120.

GAYLORD, T.G. and GATLIN, D.M. 2001 Dietary protein and energy modifications to maximize
compensatory growth of channel catfish (Ictalurus punctatus). Aquaculture, 194(3-4): 337-348.

HARTZ, S.M.; SILVEIRA, C.M.; CARVALHO, S.; VILLAMIL, C. 2000 Alimentação da piava (Leporinus obtusidens) no Lago Guaí­ba, Porto Alegre, Rio Grande do Sul, Brasil. Pesquisa Agropecuária Gaúcha, 6(1): 145-150.

HECTOR, K.L. and NAKAGAWA, S. 2012 Quantitative analysis of compensatory and catch-up growth in diverse taxa. Journal of Animal Ecology, 81(3): 583-593.

HORNICK, J.L.; van EENAEME, C.; GÉRARD, O.; DUFRASNE, I.; ISTASSE, L. 2000 Mechanisms of
reduced and compensatory growth. Domestic Animal Endocrinology, 19(2): 121-132.

JACKSON, C.M. 1937 Recovery of rats upon refeeding after prolonged suppression of growth
by underfeeding. Anatomical Record, 68(3): 371-381.

JIWYAM, W. 2010 Growth and compensatory growth of juvenile Pangasius bocourti Sauvage,
1880 relative to ration. Aquaculture, 306(1-4): 393-397.

JOBLING, M. 2010 Are compensatory growth and catch-up growth two sides of the same coin?
Aquaculture International, 18(4): 501-510.

JOBLING, M. and JOHANSEN, S.J.S. 1999 The lipostat, hyperphagia and catch-up growth.
Aquaculture Research, 30(7): 473-478.

JOBLING, M.; Jí­ËœRGENSEN, E.H.; SIIKAVUOPIO, S.I. 1993 The influence of previous feeding
regime on the compensatory growth response of maturing and immature Arctic char, Salvelinus
alpinus. Journal of Fish Biology, 43(3): 409-419.

METCALFE, N.B. and MONAGHAN, P. 2003 Growth versus lifespan: perspectives from
evolutionary ecology. Experimental Gerontology, 38(9): 935-940.

NIKKI, J.; PIRHONEN, J.; JOBLING, M.; KARJALAINEN, J. 2004 Compensatory growth in juvenile rainbow trout, Oncorhynchus mykiss (Walbaum), held individually. Aquaculture, 235(1-4): 285-296.

OSBORNE, T.B. and MENDEL, L.B. 1915 The resumption of growth after long continued failure to growth. The Journal of Biological Chemistry, 23: 439-454.

PICHA, M.E.; TURANO, M.J.; TIPSMARK, C.K.;BORSKI, R.J. 2008 Regulation of endocrine and
paracrine sources of Igfs and Gh receptor during compensatory growth in hybrid striped bass
(Morone chrysops x Morone saxatilis). Journal of Endocrinology, 199(1): 81-94.

QUINTON, J.C. and BLAKE, R.W. 1990 The effect of feed cycling and ration level on the compensatory growth response in rainbowtrout, Oncorhynchus mykiss. Journal of Fish Biology, 37(1): 33-41.

REYNALTE-TATAJE, D. and ZANIBONI-FILHO, E. 2010 Cultivo de piapara, piauçu, piava e piau -
Gênero Leporinus. In: BALDISSEROTTO, B. e

GOMES, L.C. (eds) Espécies nativas para piscicultura no Brasil. 2ª ed. UFSM, Santa Maria. p.73-99.

ROHUL-AMIN, A.K.M.; ASHRAFUL-ISLAM, M.; ABDUL-KADER, M.; BULBUL, M.; HOSSAIN,
M.A.R.; EKRAM-AZIM, M. 2012 Production performance of sutchi catfish Pangasianodon hypophthalmus S. in restricted feeding regime: effects on gut, liver and meat quality.Aquaculture Research, 43(4): 621-627.

SAETHER, B.S. and JOBLING, M. 1999 The effects of ration level on feed intake and growth, and
compensatory growth after restricted feeding, in turbot Scophthalmus maximus L. Aquaculture
Research, 30(9): 647-653.

SKALSKI, G.T.; PICHA, M.E.; GILLIAM, J.F.; BORSKI, R.J. 2005 Variable intake, compensatory
growth, and increased growth efficiency in fish: models and mechanisms. Ecology, 86(6): 1452-1462.

TUFAN, E.O.; METIN, K.; BARIS, S. 2006 Effects of starvation and re-alimentation periods on
growth performance and hyperphagic response of Sparus aurata. Aquaculture Research, 37(5):
535-537.

WEATHERLEY, A.H. and GILL, H.S. 1987 The biology of fish growth. Academic Press, London,
England. 443p.

WILSON, P.N. and OSBOURN, D.F. 1960 Compensatory growth after undernutrition in
mammals and birds. Biological Reviews, 35(3): 324-361.

WOOTON, R. 1990 Ecology of teleost fishes. Chapman and Hall, London, England. 404p.

YILMAZ, H.A. and EROLDOGAN, O.T. 2011 Combined effects of cycled starvation and
feeding frequency on growth and oxygen consumption of gilthead sea bream, Sparus
aurata. Journal of the World Aquaculture Society,42(4): 522-529.

ZAR, J.H. 2009 Biostatistical analysis. 4th ed. Pearson Education, New Delhi, India. 662p

Downloads

Publicado

2018-07-16

Edição

Seção

Artigo cientí­fico

Artigos mais lidos pelo mesmo(s) autor(es)