RESILIENCE OF THE SHORTNOSE GUITARFISH (Zapteryx brevirostris): COMPLETE COMPENSATORY GAIN, HEMATOLOGY AND HISTOPATHOLOGY

Authors

  • Veronica TAKATSUKA Instituto de Pesca, Programa de Pós-graduação
  • Ana Paula dos SANTOS Instituto de Pesca, Programa de Pós-graduação
  • Susy Hermes de SOUZA Universidade Federal do Rio Grande do Sul (UFRGS), Setor de Patologia Veterinária,
  • Luciana SONNE Universidade Federal do Rio Grande do Sul (UFRGS), Setor de Patologia Veterinária,
  • Venâncio Guedes de AZEVEDO Secretaria de Agricultura e Abastecimento do Estado de São Paulo, Agência Paulista de Tecnologia dos Agronegócios, Instituto de Pesca, Núcleo de Pesquisa e Desenvolvimento do Litoral Norte http://orcid.org/0000-0002-5157-8254
  • Eduardo Gomes SANCHES Secretaria de Agricultura e Abastecimento do Estado de São Paulo, Agência Paulista de Tecnologia dos Agronegócios, Instituto de Pesca, Núcleo de Pesquisa e Desenvolvimento do Litoral Norte http://orcid.org/0000-0001-9976-9271

DOI:

https://doi.org/10.20950/1678-2305.2019.45.2.355

Keywords:

blood parameters, histology, nutrition, zootechnical performance

Abstract

Compensatory gain has been used to evaluate the plasticity of species, in adverse situations such as food deprivation. The aim of the present study was to identify the type of compensatory gain achieved by the shortnose guitarfish (Zapteryx brevirostris), in situations of reduction of food resources. Three treatments were used: seven days of food deprivation and fourteen days of refeeding (T7x14); fourteen days of food deprivation and fourteen days of refeeding (T14x14); and feeding every day (TControl). Zootechnical performance, blood samples and histological samples were evaluated. We demonstrated that this species presented complete compensatory gain and that some blood parameters and histological alterations were associated with fasting.

References

Abilhoa, V.; Bornatowski, H.; Freitas, M. 2007. Some information on reproduction and embryonic development of the lesser guitarfish Zapteryx brevirostris in Southern Brazil. Acta Adriatica, 48(2): 185-190.

Ali, M.; Nicieza, A.; Wootton, R.J. 2003. Compensatory growth in fishes: a response to growth depression. Fish and Fisheries, 4: 147-190. https://doi.org/10.1046/j.1467-2979.2003.00120.x

Barbieri, E.; Campos-Garcia, J.; Martinez, D.S.T. ; Da Silva, J.R.M.C.; Alves, O.L.; Rezende, K.F.O. 2016. Histopathological effects on gills of Nile Tilapia (Oreochromis niloticus, Linnaeus, 1758) exposed to Pb and carbon nanotubes. Microscopy and Microanalysis, 22(6):1162-1169. https://doi.org/10.1017/S1431927616012009

Campos-Garcia, J.; Martinez, D.S.T.; Rezende, K.F.O.; Da Silva, J.R.M.C.; Alves, O.L; Barbieri, E. 2016. Histopathological alterations in the gills of Nile tilapia exposed to carbofuran and multiwalled carbon nanotubes. Ecotoxicology and Environmental Safety, 133: 481-488. https://doi.org/10.1016/j.ecoenv.2016.07.041

Chatakondi, N.G.; Yant, R.D. 2001. Application of compensatory growth to enhance production in channel catfish Ictalurus punctatus. Journal of the World Aquaculture Society, 32(3): 278í 285. https://doi.org/10.1111/j.1749-7345.2001.tb00451.x

Cho, S.H.; Lee, S.M.; Park, B.H.; Ji, S.C.; Lee, J.; Bae, J.; Oh, S.Y. 2006. Compensatory growth of juvenile olive flounder, Paralichthys olivaceus L., and changes in proximate composition and body condition indexes during fasting and after refeeding in summer season. Journal of the World Aquaculture Society, 37(2): 168í 174. https://doi.org/10.1111/j.1749-7345.2006.00023.x

Dallagnol, J.M.; Higuchi, L.H.; Maluf, M.L.F.; Feiden, A.; Boscolo, W.R. 2014. Evaluation of serum pacu fed diets with different protein and energy cultivated in cages. Acta Iguazu, 3(2): 97í 108.

Eivazi-Ziaei, J.; DastgirI, S.; Pourebrahim, S.; Soltanpour, R. 2008. Usefulness of red blood cell flags in diagnosing and differentiating thalassemia trait from iron-deficiency anemia. Hematology, 13(4): 253í 256. https://doi.org/10.1179/102453308X316040

Ferreira, C.M.; Field, C.L.; Tuttle, A.D. 2010. Hematological and plasma biochemical parameters of aquarium-maintained cownose rays. Journal of Aquatic Animal Health, 22(2): 123í 128. http://dx.doi.org/10.1577/H09-048.1

Foss, A.; Imsland, A.K.; Vikingstad, E.; Stefansson, S.O.; Norberg, B.; Pedersen, S.; Sandvik, T.; Roth, B. 2009. Compensatory growth in atlantic halibut: effect of starvation and subsequent feeding on growth, maturation, feed utilization and flesh quality. Aquaculture 290(3-4): 304í 310. https://doi.org/10.1016/j.aquaculture.2009.02.021

Grant, K.R.; Campbell, T.W.; Silver, T.I.; Olea-Popelka, F.J. 2012. Validation of an ultrasound guided technique to establish a liver to coelom ratio and a comparative analysis of the ratios among acclimated and recently wild caught southern stingrays, Dasyatis americana. Zoo Biology, 32(1): 104í 111. https://doi.org/10.1002/zoo.21014

Griffiths, S.P. 2000. The use of clove oil as an anaesthetic and method for sampling intertidal rockpool fishes. Journal of Fish Biology, 57: 1453í 1464. https://doi.org/10.1111/j.1095-8649.2000.tb02224.x

Hayard, R.S.; Noltie, D.B.; Wang, N. 1997. Use of compensatory growth to double hybrid sunfish growth rates. American Fisheries Society, 126: 316í 322. https://doi.org/10.1577/1548-8659(1997)126<0316:NUOCGT>2.3.CO;2

Heymsfield, S.B.; Mcmanus, C.; Smith, J.; Stevens, V.; Nixon, D.W. 1982. Anthropometric measurement of muscle mass: revised equations for calculating bone-free arm muscle area. American Journal of Clinical Nutrition, 36: 680í 690. https://doi.org/10.1093/ajcn/36.4.680

Holling, C.S. 1973. Resilience and stability of ecological systems. Annual Review of Ecology, Evolution, and Systematics, 4: 1í 23. https://doi.org/10.1146/annurev.es.04.110173.000245

Marion, C.; Vaske-Junior, T.; Gadig, O.B.F.; Martins, I.A. 2011. Feeding habits of the shortnose guitarfish Zapteryx brevirostris (Müller and Henle, 1841) (Elasmobranchii, Rhinobatidae) in southeastern Brazil. Brazilian Journal of Biology, 71: 83í 89. http://dx.doi.org/10.1590/S1519-69842011000100013

Natt, M.P.; Herrick, C.A. 1952. A new blood diluents for counting the erythrocytes and leucocytes of the chicken. Poultry Science, 31: 735í 738.

Pinheiro, H.T.; Martins, A.S. 2009. Estudo comparativo da captura artesanal do camarão sete- barbas e sua fauna acompanhante em duas áreas de pesca do litoral do estado do Espí­­rito Santo, Brasil. Boletim do Instituto de Pesca, 35(2): 215í 225. http://www.scielo.br/pdf/bn/v13n1/19.pdf

Ranzani-Paiva, M.J.T.; Pádua, S.B.; Tavares-Dias, M.; Egami, M.I. 2013. Métodos para análise hematológica em peixes, 1a. ed. Maringá.

Rezende, K.F.O.; Bergami, E.; Alves, K.V.B.; Corsi, I.; Barbieri, E. 2018. Titanium dioxide nanoparticles alters routine metabolism and causes histopathological alterations in Oreochromis niloticus. Boletim do Instituto de Pesca, 44(2): 343-343. http://dx.doi.org/10.20950/1678-2305.2018.343

Ribeiro, F.F.; Tsuzuki, M.Y. 2010. Compensatory growth responses in juvenile fat snook, Centropomus parallelus Poey, following food deprivation. Aquaculture Research, 41: 226í 233. https://doi.org/10.1111/j.1365-2109.2010.02507.x

Riche, M.; Haley, D.I.; Oetker, M.; Garbrecht, S.; Garling, D.L. 2004. Effect of feeding frequency on gastric evacuation and the return of appetite in tilapia Oreochromis niloticus (L.). Aquaculture, 234: 657í 673. https://doi.org/10.1016/j.aquaculture.2003.12.012

Rosenfeld, G. 1947. Corante pancromático para hematologia e citologia clí­­nica. Nova combinação dos componentes do May-Grünwald e do Giemsa num só corante de emprego rápido. Memórias do Instituto Butantan, 20: 329í 334.

Sogard, S.M.; Olla, B.L. 2002. Contrasts in the capacity and underlying mechanisms for compensatory growth in two pelagic marine fishes. Marine Ecology Progress Series, 243: 165í 177. https://www.int-res.com/abstracts/meps/v243/p165-177/

Türkmen, S.; EroldoÄŸan, O.T.; Yilmaz, H.A.; í­–lçülü, A.; Inan, G.A.K.; Erçen, Z.; TekelioÄŸlu, N. 2012. Compensatory growth response of european sea bass (Dicentrarchus labrax L.) under cycled starvation and restricted feeding rate. Aquaculture Research, 43: 1643í 1650. https://doi.org/10.1111/j.1365-2109.2011.02970.x

Vooren, C.M.; Amónaca, A.F.; Massa, A.; Hozbor, N. 2006. Zapteryx brevirostris. IUCN 2014. IUCN Red List Threat. Species. Version 2014.1.

Wintrobe, M.M., 1934. Variations in the size and hemoglobin content of erythrocytes in the blood of varius vertebrates. Folia Haematologica, 51: 32í 49.

Won, E.T.; Borski, R.J. 2013. Endocrine regulation of compensatory growth in fish. Frontiers in Endocrinology, 4: 1í 14. https://doi.org/10.3389/fendo.2013.00074

Downloads

Published

2019-03-27