EFFECTIVENESS OF BENZOCAINE AS ANESTHETIC AT DIFFERENT WATER TEMPERATURES FOR EARLY JUVENILE CURIMBA (<i>Prochilodus lineatus</i> Valenciennes, 1836), A NEOTROPICAL FISH SPECIES

Authors

  • Elias Fernandes de Medeiros JÚNIOR Instituto Federal de Educação, Ciência e Tecnologia do Amazonas
  • Silvio Akira UEHARA Fundação Instituto de Pesca do Estado do Rio de Janeiro (FIPERJ)
  • Thiago Mendes de FREITAS Fundação Instituto de Pesca do Estado do Rio de Janeiro (FIPERJ) http://orcid.org/0000-0002-4329-7401
  • Nuno Filipe Alves Correia de MELO Universidade Federal Rural da Amazônia, Programa de Pós-Graduação em Aquicultura e Recursos Aquáticos Tropicais http://orcid.org/0000-0003-4163-4133
  • Glauber David Almeida PALHETA Universidade Federal Rural da Amazônia, Programa de Pós-Graduação em Aquicultura e Recursos Aquáticos Tropicais
  • Rodrigo TAKATA Fundação Instituto de Pesca do Estado do Rio de Janeiro (FIPERJ)/Universidade Federal Rural da Amazônia, Programa de Pós-Graduação em Aquicultura e Recursos Aquáticos Tropicais http://orcid.org/0000-0003-3385-6895

DOI:

https://doi.org/10.20950/1678-2305.2019.45.3.474

Keywords:

anesthesia, management, fish farm, induction, recovery, aquaculture

Abstract

Anesthetics have been used frequently in aquaculture to minimize stress during handling. However, several factors can affect the efficiency of anesthetics. For example, temperature is one of the abiotic factors that control animal metabolism and consequently, the effect of anesthetics. This study aimed to evaluate the effectiveness of benzocaine as an anesthetic for early juveniles of curimba Prochilodus lineatus at different water temperatures. Juveniles (4.7 ± 1.6 g and total length of 7.4 ± 0.7 cm) were submitted to anesthesia at concentrations of 30, 40, 50, 60, 70, and 80 mg L-1 of benzocaine and temperatures of 22, 25, 28, and 31 °C. The effects were evaluated by measuring the induction time to deep and surgical anesthesia, recovery time, time to appetite return, and 96-h mortality rate. The higher temperatures (25, 28 and 31°C) provided shorter induction times to reach deep anesthesia and at 50 mg L-1 of benzocaine, the induction time was between 2 and 3 min. Juveniles at temperatures of 28 and 31 °C showed lower surgical anesthesia induction time at concentrations ranging from 60 to 80 mg L-1. Recovery time was longer at 22 °C at all concentrations. The time to appetite return occurred in the first 24 h after anesthesia and the 96-h mortality rate was lower than 10%. Under these conditions, for deep anesthesia, benzocaine concentration of 50 mg L-1 for water temperatures of 25, 28, and 31 °C and 60 mg L-1 for 22 °C are recommended. Surgical anesthesia can be performed with 50 mg L-1 of benzocaine at all four water temperatures. The differences documented in the present study underline the need for adequate concentrations of anesthetics depending on the prevalent water temperature for Neotropical fish species. This should be considered in recommendations for large-scale use.

References

Avigliano, E.; Pisonero, J.; Dománico, A.; Sánchez, S.; Volpedo, A.V. 2017. Migration and brackish environment use of Prochilodus lineatus (Characiformes: Prochilodontidae) inferred by Sr:Ca ratio transects of otolith. Neotropical Ichthyology, 15(3): e170055. http://dx.doi.org/10.1590/1982-0224-20170055.

Barton, B.A.; Iwama, G.K. 1991. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annual Review of Fish Diseases, 1: 3-26. https://doi.org/10.1016/0959-8030(91)90019-g.

Bittencourt, F.; Souza, B.E.; Boscolo, W.R.; Rorato, R.R.; Feiden, A.; Neu, D.H. 2012. Benzocaine and eugenol as anesthetics for golden fish (Carassius auratus). Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 64(6):
1597-1602. http://dx.doi.org/10.1590/S0102-09352012000600028.

Dawson, V.K.; Gilderhus, P.A. 1979. Ethyl-p-aminobenzoate (Benzocaine): Efficacy as an anesthetic for five species of freshwater fish. Investigations in Fish Control 87, La Crosse: U.S. Fish and Wildlife Service. 5p.

Frascá-Scorvo, C.M.D.; Carneiro, D.J.; Malheiros, E.B. 2001. Feeding behaviour of "matrinxã” (Brycon cephalus) during the period of lower temperatures. Boletim do Instituto de Pesca, 27(1): 1-5.

Garcia, L.O.; Copatti, C.E.; Wachholz, F.; Pereira-Filho, W.; Baldisserotto, B. 2008. Freshwater temperature in the state of Rio Grande do Sul, Southern Brazil, and its implication for fish culture. Neotropical Ichthyology, 6(2): 275-281. http://dx.doi.org/10.1590/S1679-62252008000200016.

Gilderhus, P.A. 1989. Efficacy of benzocaine as an anesthetic for salmonid fishes. North American Journal of Fisheries Management, 9(2): 150-153. https://doi.org/10.1577/1548-8675(1989)009<0150:EO BAAA>2.3.CO;2.

Gilderhus, P.A. 1990. Benzocaine as a fish anesthetic: efficacy and safety for spawning-phase salmon. Progressive Fish-Culturist, 52(3):189-191. https://doi.org/10.1577/1548-8640(1990)052<0189:BAAFAE>2.3.CO;2.

Gilderhus, P.A.; Carol, A.L.; Woods III, L.C. 1991. Benzocaine as an Anesthetic for Striped Bass. The Progressive Fish-Culturist, 53(2): 105-107. https://doi.org/10.1577/1548-8640(1991)053<0105:BAAAFS>2.3.CO;2.

Gilderhus, P.A.; Marking, L.L. 1987. Comparative efficacy of 16 anesthetic chemicals on Rainbow trout. North American Journal of Fisheries Management, 7(2): 288 292. https://doi.org/10.1577/1548-8640(1990)052<0189:BAAFAE>2.3.CO;2.

Gimbo, R.Y.; Saita, M.V.; Gonçalves, A.F.N.; Takahashi, L.S. 2008. Diferentes concentrações de benzocaí­­na na indução anestésica do lambari-do-rabo-amarelo (Astyanax altiparanae). Revista Brasileira de Saúde e Produção Animal, 9(2): 350-357.

Gomes, D.P.; Chaves, B.W.; Becker, A.G.; Baldisserotto, B. 2011. Water parameters affect anaesthesia induced by eugenol in silver catfish, Rhamdia quelen. Aquaculture Research, 42(6): 878-886. https://doi.org/10.1111/j.1365-2109.2011.02864.x.

Gomes, L.C.; Chippari-Gomes, A.R.; Lopes, N.P.; Roubach, R.; AraujoLima, A.R.M. 2007. Efficacy of Benzocaine as na Anaesthetic in Juvenile Tambaqui, Colossoma Macropomum. Journal of the World Aquaculture Society, 32(4): 426-431. https://doi.org/10.1111/j.1749-7345.2001.tb00470.x.

Hikasa, Y.; Takasa, K.; Ogasawara, T.; Ogasawara, S. 1986. Anesthesia and recovery with tricaine methanesulfonate, eugenol and thiopental sodium in the cap, Cyprinus carpio. Nippon Juigaku Zasshi, 48(2): 341-351.

Hoskonen, P.; Pirhonen, J. 2004. Temperature effects of anaesthesia with clove oil in six temperate-zone fishes. Journal of Fish Biology, 64:1136-1142. https://doi.org/10.1111/j.1095-8649.2004.00359.x.

Houston, A.H.; Woods, R.J. 1976. Influence of temperature upon tricaine methane sulphonate uptake and induction of anestesia in rainbow trout (Salmo gairdneri). Comparative Biochemistry and Physiology
Part C: Comparative Pharmacology, 54(1): 1-6. https://doi.org/10.1016/0306-4492(76)90016-2.

IBAMA í  Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. 2015. Laudo Técnico Preliminar. Impactos ambientais decorrentes do desastre envolvendo o rompimento da barragem de
Fundão, em Mariana, Minas Gerais. Available from: http://www.ibama.gov.br/phocadownload/barragemdefundao/
laudos/laudo_tecnico_preliminar_Ibama.pdf.

IBGE í  Instituto Brasileiro de Geografia e Estatí­­stica. 2016. Produção da Pecuária Municipal, 44: 1-51. ISSN 0101-4234.

Jepsen, N.; Koed, A.; Thorstad, E.B.; Baras, E. 2002. Surgical implantation of telemetry transmitters in fish: how much have we learned? Hydrobiologia, 483(1-3): 239í 248. https://doi.org/10.1023/A:1021356302311.

King, V. W.; Hooper, B.; Hillsgrove, S.; Benton, C.; Berlinsky, D.L. 2005.The use of clove oil, metomidate, tricaine methanesulphonate and 2-phenoxyethanol for inducing anaesthesia and their effect on the cortisol stress response in black sea bass (Centropristis striata L.) Aquaculture Research, 36(14): 1442-1449. https://doi.org/10.1111/j.1365-2109.2005.01365.x.

Marking, L.L.; Meyer, F.P. 1985. Are better anesthetics needed in fisheries? Fisheries, 10: 2-5 https://doi.org/10.1577/1548-8446(1985)010<0002:ABANIF>2.0.CO;2.

Massee, K.C.; Rust, M.B.; Hardy, R.W.; Stickney, R.R. 1995. The effectiveness of tricaine, quinaldine sulfate and metomidate as anesthetics for larval fish. Aquaculture, 134(3): 351-359. https://doi.org/10.1016/0044-8486(95)00057-9.

Mylonas, C.C., Cardinaletti, G., Sigelaki, I., Polzonetti-Magni, A., 2005. Comparative efficacy of clove oil and 2-phenoxyethanol as anesthetics in the aquaculture of European sea bass (Dicentrarchus labrax) and gilthead
sea bream (Sparus aurata) at different temperatures. Aquaculture, 246(1-4), 467í 481. https://doi.org/10.1016/j.aquaculture.2005.02.046.

Parker, N.; Davis, K. 1981. Requirements of warmwater fish. In: Allen, L.; Kinney, E. Proceedings of the bioengineering symposium for fish culture. Fish culture section of the American Fisheries Society, Bethesda. p. 21-28.

Parma De Croux, M.J. 1990. Benzocaine (Ethyl-p-Aminobenzoate) as na anaesthesia for Prochilodus lineatus, Valenciennes (Pisces,Curimatidae). Journal of Applied Ichthyology, 6(3): 189-192. https://doi.org/10.1111/j.1439-0426.1990.tb00578.x.

Piana, P.A.; Cardoso, B.F.; Dias, J.; Gomes, L.C.; Agostinho, A.A.; Miranda, L.E. 2017. Using long-term data to predict fish abundance: the case of Prochilodus lineatus (Characiformes, Prochilodontidae) in the intensely regulated upper Paraná River. Neotropical Ichthyology,15(3): e160029. http://dx.doi.org/10.1590/1982-0224-20160029.

Priborsky, J.; Velisek, J. 2018. A Review of Three Commonly Used Fish Anesthetics. Journal

Reviews in Fisheries Science & Aquaculture, 26(4): 417-442. https://doi.org/10.1080/23308249.2018.1442812.

Ribeiro, P.A.P.; De Melo, D.C.; Santo, A.H.E.; Silva, W.S.; Santos, A.E.H.; Luz, R.K. 2015. A tricaine as an anaesthetic for larvae and juveniles of Lophiosilurus alexandri, a carnivorous freshwater fish. Aquaculture Research, 46(7): 1788í 1792. https://doi.org/10.1111/are.12316.

Ross, L.G.; Geddes, J.A. 1979. Sedation of warm-water fish species in aquaculture research. Aquaculture, 16(2): 183-186. https://doi.org/10.1016/0044-8486(79)90150-9.

Ross, L.G.; Ross, B. 2008. Anaesthetic and sedative techniques for aquatic animals. Blackwell Scienc, Oxford. p. 240.

Sandblom, E.; Grí­¤ns, A.; Axelsson, M.; Seth, H. 2014 Temperature acclimation rate of aerobic scope and feeding metabolism in fishes: implications in a thermally extreme future. Proceedings of the Royal Society B: Biological Sciences, 281(1794): 20141490. http://dx.doi.org/10.1098/rspb.2014.1490.

Sneddon, L.U. 2012. Clinical anesthesia and analgesia in fish. Journal of Exotic Pet Medicine, 21(1): 32-43. https://doi.org/10.1053/j.jepm.2011.11.009.

Stehly, G.R., Gingerich, W.H., 1999. Evaluation of AQUI-S(TM) (efficacy and minimum toxic concentration) as a fish anaesthetic sedative for public aquaculture in the United States. Aquaculture Research, 30(5):365í 372. https://doi.org/10.1046/j.1365-2109.1999.00339.x.

Sylvester, J.R.; Holland, L.E. 1982. Influence of temperature, water hardness, and stocking density on MS-222 response in three species of fish. The Progressive Fish-Culturist, 44(3): 138-141. https://doi.org/10.1577/1548-8659(1982)44[138:IOTWHA]2.0.CO;2.

Taylor, B.W.; Flecker, A.S.; Hall, R.O. 2006. Loss of a harvested fish species disrupts carbon flow in a diverse tropical river. Science, 313(5788):833-836. http://dx.doi.org/10.1126/science.1128223.

Woolsey, J.; Holcomb, M.; Ingermann, R.L. 2004. Effect of temperature on clove oil anesthesia in steelhead fry. North American Journal of Aquaculture, 66(1): 35-41. https://doi.org/10.1577/A03-008.

Zahl, I.H.; Kiessling, A.; Samuelsen, O.B.; Hansen, M.K. 2009. Anaesthesia of Atlantic cod (Gadus morhua) í  Effects of pre-anaesthetic sedation, and importance of body weight, temperature and stress. Aquaculture, 295(1-2): 52-59, https://doi.org/10.1016/j.aquaculture.2009.06.019.

Zahl, I.H.; Samuelsen, O.; Kiesslling, A. 2012. Anaesthesia of farmed fish: implications for welfare. Fish Physiology and Biochemistry, 38(1): 201-218. https://doi.org/10.1007/s10695-011-9565-1.

Published

2019-09-03

Most read articles by the same author(s)