GROWTH PERFORMANCE AND INCIDENCE OF SKELETAL ANOMALIES IN PACU LARVAE UNDER DIFFERENT WEANING PROTOCOLS

Authors

  • Thiago Mendes de Freitas Fundação Instituto de Pesca do Estado do Rio de Janeiro -  FIPERJ http://orcid.org/0000-0002-4329-7401
  • Ivã Guidini Lopes Universidade Estadual Paulista -  UNESP, Centro de Aquicultura http://orcid.org/0000-0003-0381-7537
  • Taís da Silva Lopes Secretaria da Agricultura e Abastecimento -  SAA, Agência Paulista de Tecnologia dos Agronegócios -  APTA, Instituto de Pesca
  • Hellen Buzollo Universidade Estadual Paulista -  UNESP, Departamento de Biologia Aplicada Á  Agropecuária
  • Maria Célia Portella Universidade Estadual Paulista -  UNESP, Centro de Aquicultura http://orcid.org/0000-0003-4244-1202

DOI:

https://doi.org/10.20950/1678-2305.2019.45.1.433

Keywords:

Piaractus mesopotamicus, skeletal anomalies, weaning, intensive larviculture

Abstract

The inadequate supply of food during a fish’s larval stage, in addition to impairing growth and survival, may lead to the emergence of skeletal anomalies, since essential nutrients are involved in the osteogenic process. The aim of this study was to evaluate the effects of two weaning periods on growth, survival and incidence of skeletal anomalies in pacu larvae (Piaractus mesopotamicus) during its initial development. The larvae (5 dph) were placed in 100L tanks at a density of 12 larvae L-1, during 42 days. The experiment was conducted in a completely randomized design with four feeding treatments: (A) larvae fed only Artemia nauplii; (D) larvae fed only formulated diet; and two treatments with different weaning periods, early at six (W6) and late, at twelve days of feeding (W12). Higher growth indexes and survival rates were observed in A and W12, in comparison to W6 and D. At the end of the experiment, larvae fed Artemia nauplii and subjected to late weaning (W12) presented higher mass gain and survival, in comparison to W6 and D, however the incidence of skeletal anomalies was similar among treatments. It was concluded that the emergence of skeletal anomalies in P. mesopotamicus larvae was not associated to the weaning protocols used in this study and late weaning, at 12 days of feeding, did not impair growth and survival of these larvae.

References

Aragão, C.; Conceição, L.E.C.; Fyhn, H.J.; Dinis, M.T. 2004. Estimated amino acid requirements during early ontogeny in Fish with different life styles: gilthead seabream (Sparus aurata) and Senegalese sole (Solea senegalensis). Aquaculture, 242(1-4): 589-605. https://doi.org/10.1016/j.aquaculture.2004.09.015.

Argüello-Guevara, W.; Bohórquez-Cruz, M.; Silva, A. 2014. Malformaciones craneales en larvas y juveniles de peces cultivados. Latin American Journal of Aquatic Research, 42(5): 950-962. http://dx.doi.org/10.3856/vol42-issue5-fulltext-2.

Barbieri, E.; Bondioli, A.C.V. 2015. Acute toxicity of ammonia in Pacu fish (Piaractus mesopotamicus, Holmberg, 1887) at different temperatures levels. Aquaculture Research, 46(3): 565-571. https://doi.org/10.1111/are.12203

Boglino, A.; Darias, M.J.; Ortiz-Delgado, J.B.; Ozcan, F.; Estévez, A.; Andree, K.B.; Hontoria, F.; Sarasquete, C.; Gisbert, E. 2012. Commercial products for artemia enrichment affect growth performance, digestive system maturation, ossification and incidence of skeletal in Senegalese sole (Solea senegalensis) larvae. Aquaculture, 324-325: 290-302. https://doi.org/10.1016/j.aquaculture.2011.11.018.

Boglione, C.; Gavaia, P.; Koumoundouros, G.; Gisbert, E.; Moren, M.; Fontagne, S.; Witten, P.E. 2013a. Skeletal anomalies in reared European fish larvae and juveniles. Part 1: Normal and anomalous skeletogenic processes. Reviews in Aquaculture, 5(s1): S99í S120. https://doi.org/10.1111/raq.12015.

Boglione, C.; Pulcini, D.; Scardi, M.; Palamara, E.; Russo, T.; Cataudella, S. 2014. Skeletal anomaly monitoring in rainbow trout (Oncorhynchus mykiss, Walbaum 1792) reared under different conditions. PLOS ONE 9(10): e111294. https://doi.org/10.1371/journal.pone.0111294

Boglione, C.; Gagliardi, F.; Scardi, M.; Cataudella, S. 2001. Skeletal descriptors and quality assessment in larvae and post-larvae of wild-caught and hatchery-reared gilthead sea bream (Spaurus aurata L. 1758). Aquaculture, 192(1): 1-22. https://doi.org/10.1016/S0044-8486(00)00446-4.

Boglione, C.; Gisbert, E.; Gavaia, P.; Witten, P.E.; Moren, M.; Fontagné, S.; Koumoundouros, G. 2013b. Skeletal anomalies in reared European fish larvae and juveniles. Part 2: main typologies, occurrences and causative factors. Reviews in Aquaculture, 5(s1): S121-S167. https://doi.org/10.1111/raq.12016.

Cahu, C.; Zambonino-Infante, J.; Takeuchi, T. 2003. Nutritional components affecting skeletal development in fish larvae. Aquaculture, 227(1-4): 245-248. https://doi.org/10.1016/S0044-8486(03)00507-6.

Carvalho, A.P.; Oliva-Teles, A.; Bergot, P. 2003. A preliminary study on the molecular weight profile of soluble protein nitrogen in live food organisms for fish larvae. Aquaculture, 225(1-4): 445-449. https://doi.org/10.1016/S0044-8486(03)00308-9.

Cobcroft, J.M.; Shu-Chien, A.C.; Kuah, M.; Jaya-Ram, A.; Battaglene, S.C. 2012. The effects of tank colour, live food enrichment and greenwater on the early onset of jaw malformation in striped trumpeter larvae. Aquaculture, 356-357: 61-72. https://doi.org/10.1016/j.aquaculture.2012.05.035.

Corrales, J.; Thornton, C.; White, M.; Willett, K.L. 2014. Multigenerational effects of benzo[a]pyrene exposure on survival and developmental deformities in zebrafish larvae. Aquatic Toxicology, 148: 16-26. https://doi.org/10.1016/j.aquatox.2013.12.028.

Darias, M.J.; Lan Chow Wing, O.; Cahu, C.; Zambonino-Infante, J.L.; Mazurais, D. 2010. Double staining protocol for developing European sea bass (Dicentrarchus labrax) larvae. Journal of Applied Ichthyology, 26(2): 280-285. https://doi.org/10.1111/j.1439-0426.2010.01421.x.

Faulk, C.K.; Holt, G.J. 2009. Early weaning of southern ï¬"šounder, Paralichthys lethostigma, larvae and ontogeny of selected digestive enzymes. Aquaculture, 296(3-4): 213-218. https://doi.org/10.1016/j.aquaculture.2009.08.013.

Freitas, T. M. 2015. Capacidade digestiva durante a ontogenia de larvas de pacu, Piaractus mesopotamicus, Jaboticabal, Brasil. 150f. (Tese de Doutorado. Centro de Aquicultura da UNESP - CAUNESP. Disponí­­vel em: <https://repositorio.unesp.br/bitstream/handle/11449/134053/000855140.pdf?sequence=1&isAllowed=y> Acesso em: 10 jan. 2018.

Gjerde, B.; Pante, M.J.R.; Baeverfjord, G. 2005. Genetic variation for a vertebral deformity in Atlantic salmon (Salmo salar). Aquaculture, 244(1-4): 77-87. https://doi.org/10.1016/j.aquaculture.2004.12.002.

Hernandez, D.R.; Santinon, J.J.; Sanchez, S.; Domitrovic, H.A. 2013. Crecimiento, supervivencia e incidencia de malformaciones óseas en distintos biotipos de Rhamdia quelen durante la larvicultura. Latin American Journal of Aquatic Research, 41(5): 877-887. http://dx.doi.org/103856/vol41-issue5-fulltext-8.

Izquierdo, M.S.; Socorro, J.; Roo, J. 2010. Studies on the appearance of skeletal anomalies in red porgy: effect of culture intensiveness, feeding habits and nutritional quality of live preys. Journal of Applied Ichthyology, 26(2): 320-326. https://doi.org/10.1111/j.1439-0426.2010.01429.x.

Jomori, R.K.; Carneiro, D.J.; Malheiros, E.B.; Portella, M.C. 2005. Economic evaluation of Piaractus mesopotamicus juvenile production in different rearing systems. Aquaculture, 234(1-4): 175-183. https://doi.org/10.1016/j.aquaculture.2004.09.034.

Jomori, R.K.; Carneiro, D.J.; Malheiros, E.B.; Portella, M.C. 2003. Growth and survival of pacu Piaractus mesopotamicus (Holmberg, 1887) juveniles reared in ponds or at different initial larviculture periods indoors. Aquaculture, 221(1-4): 277-287. https://doi.org/10.1016/S0044-8486(03)00069-3.

Jomori, R.K.; Ducatti, C.; Carneiro, D.J.; Portella, M.C. 2008. Stable carbon (δ13C) and nitrogen (δ15N) isotopes as natural indicators of live and dry food in Piaractus mesopotamicus (Holmberg, 1887) larval tissue. Aquaculture Research, 39(4): 370-381. https://doi.org/10.1111/j.1365-2109.2007.01760.x.

Kause, A.; Ritola, O.; Paananen, T. 2007. Changes in the expression of genetic characteristics across cohorts in skeletal deformations of farmed salmonids. Genetics Selection Evolution, 39(5): 529-543. https://doi.org/10.1186/1297-9686-39-5-529.

Koumoundouros, G.; Divanach, P.; Kentouri, M. 2001. The effect of rearing conditions on development of saddleback syndrome and caudal fin deformities in Dentex dentex L. Aquaculture, 200(3-4): 285-304. https://doi.org/10.1016/s0044-8486(01)00552-x.

Lall, S.P.; Lewis-MCCrea, L.M.L. 2007. Role of nutrients in skeletal metabolism and pathology in fish - an overview. Aquaculture, 267(1-4): 3-19. https://doi.org/10.1016/j.aquaculture.2007.02.053.

Lanes, C.F.C.; Teshome, T.B.; Bolla, S.; Martins, C.; Fernandes, J.M.O.; Bianchini, A.; Kiron, V.; Babiak, I. 2012. Biochemical composition and performance of Atlantic cod (Gadus morhua L.) eggs and larvae obtained from farmed and wild broodstocks. Aquaculture, 324-325: 267-275. https://doi.org/10.1016/j.aquaculture.2011.10.036.

Leitão, N.J.; Pai-Silva, M.; Almeida, F.L.A.; Portella, M.C. 2011. The influence of initial feeding on muscle development and growth in pacu Piaractus mesopotamicus larvae. Aquaculture, 315(1-2): 78-85. https://doi.org/10.1016/j.aquaculture.2011.01.006.

Lopes, I.G.; Araújo-Dairiki, T.B.; Kojima, J.T.; Val, A.L.; Portella, M.C. 2018. Predicted 2100 climate change scenarios affects growth and skeletal development of tambaqui (Colossoma macropomum) larvae. Ecology and Evolution, in press. https://doi.org/10.1002/ece3.4429.

Lopes, T.S.; Freitas, T.M.; Jomori, R.K.; Carneiro, D.J.; Portella, M.C. 2014. Skeletal anomalies of pacu Piaractus mesopotamicus larvae from a wild-caught broodstock. Journal of the World Aquaculture Society, 45(1): 15-27. https://doi.org/10.1111/jwas.12092.

Menossi, O.C.C.; Takata, R.; Sanches-Amaya, M.I.; Freitas, T.M.; Yúfera, M.; Portella, M.C. 2012. Crescimento e estruturas do sistema digestório de larvas de pacu alimentadas com dieta microencapsulada produzida experimentalmente. Revista Brasileira de Zootecnia, 41(1): 1-10. http://dx.doi.org/10.1590/s1516-35982012000100001.

Portella, M.C.; Jomori, R.K.; Leitão, N.J.; Menossi, O.C.C.; Freitas, T.M.; Kojima, J.T.; Lopes, T.S.; Clavijo-Ayala, J.A.; Carneiro, D.J. 2014. Larval development of indigenous South American freshwater fish species, with particular reference to pacu (Piaractus mesopotamicus): A review. Aquaculture, 432: 402-417. https://doi.org/10.1016/j.aquaculture.2014.04.032.

Potthoff, T. 1984. Clearing and staining techniques. In: Moser, H. G.; Richards, W.J.; Cohen, D.M.; Fahay, M.P.; Kendall JR. A.W.; Richardson, S.L. Ontogeny and systematics of fishes. American Society of Ichthyologists and Herpetologists. Special publication, Allen Press, Lawrence, p. 35-37.

Roo, F.J.; Hernandez-Cruz, C.M.; Socorro, J.A.; Fernandez-Palacios, H.; Izquierdo, M.S. 2010. Occurrence of skeletal deformities and osteological development in red porgy Pagrus pagrus larvae cultured under different rearing techniques. Journal of Fish Biology, 77(6): 1309-1324. https://doi.org/10.1111/j.1095-8649.2010.02753.x.

Roo, F.J.; Hernández-Cruz, C.M.; Socorro, J.A.; Fernández-Palacios, H.; Montero, D.; Izquierdo, M.S. 2009. Effect of DHA content in rotifers on the occurrence of skeletal deformities in red porgy Pagrus pagrus (Linnaeus, 1758). Aquaculture, 287(1-2): 84-93. https://doi.org/10.1016/j.aquaculture.2008.10.010.

Roo, F.J.; Socorro, J.; Izquierdo, M.S. 2010. Effect of rearing techniques on skeletal deformities and osteological development in red porgy Pagrus pagrus (Linnaeus, 1758) larvae. Journal of Applied Ichthyology, 26(2): 372-376. https://doi.org/10.1111/j.1439-0426.2010.01437.x.

Saavedra, M.; Barr, Y.; Pousão-Ferreira, P.; Helland, S.; Yúfera, M.; Dinis, M.T.; Conceição, L.E.C. 2009. Supplementation of tryptophan and lysine in Diplodus sargus larval diet: effects on growth and skeletal deformities. Aquaculture Research, 40(10): 1191-1201. https://doi.org/10.1111/j.1365-2109.2009.02219.x.

Sfakianakis, D.G.; Georgakopoulou, E.; Papadakis, I.E.; Divanach, P.; Kentouri, M.; Koumoundouros, G. 2006. Environmental determinants of haemal lordosis in European sea bass, Dicentrarchus labrax (Linnaeus, 1758). Aquaculture, 254(1-4): 54-64. https://doi.org/10.1016/j.aquaculture.2005.10.028.

Sikorska, J.; Wolnicki, J.; Kamií­±ski, R.; Stolovich, V. 2012. Effect of different diets on body mineral content, growth, and survival of barbel, Barbus barbus (L.), larvae under controlled conditions. Archives of Polish Fisheries, 20(1): 3-10. [online] URL: <http://www.infish.com.pl/wydawnictwo/Archives/Fasc/work_pdf/Vol20Fasc1/Vol20-Fasc1-%20w01.pdf>

Tesser, M.B., Carneiro, D.J., Portella, M.C. 2005. Co-feeding of pacu (Piaractus mesopotamicus, Holmberg 1887) larvae with Artemia nauplii and microencapsulated diet. Journal of Applied Ichthyology, 17(2): 47-49. https://doi.org/10.1300/j028v17n02_04.

Villeneuve, L.; Gisbert, E.; Le Delliou, H.; Cahu, C.L.; Zambonino-Infante, J.L. 2005. Dietary levels of all-trans retinol affect retinoid nuclear receptor expression and skeletal development in European sea bass larvae. British Journal of Nutrition, 93(6): 791-801. https://doi.org/10.1079/BJN20051421.

Wittenrich, M. L.; Rhody, N.R.; Turingan, R.G.; Main, K.L. 2009. Coupling osteological development of the feeding apparatus with feeding performance in common snook, Centropomus undecimalis, larvae: identifying morphological constraints to feeding. Aquaculture, 294(3-4): 221-227. https://doi.org/10.1016/j.aquaculture.2009.06.006.

Yang, R.; Xie, C.; Fan, Q.; Gao, C.; Fang, L. 2010. Ontogeny of the digestive tract in yellow catï¬Âsh Pelteobagrus fulvidraco larvae. Aquaculture, 302(1-2): 112-123. https://doi.org/10.1016/j.aquaculture.2010.02.020.

Zambonino-Infante, J.L., Cahu, C.L. 2007. Dietary modulation of some digestive enzymes and metabolic processes in developing marine fish: applications to diet formulation. Aquaculture, 268(1-4): 98-105. https://doi.org/10.1016/j.aquaculture.2007.04.032.

Downloads

Published

2019-02-13

Most read articles by the same author(s)