EFFECTS OF THE USE OF 17Î"™-ESTRADIOL FOR <i>Leporinus macrocephalus</i> FEMINIZATION

Authors

  • Thiago Scremin Boscolo PEREIRA Centro Universitário de Rio Preto -  UNIRP
  • Camila Nomura Pereira BOSCOLO Centro Universitário de Rio Preto -  UNIRP
  • Sergio Ricardo BATLOUNI Universidade Estadual Paulista -  UNESP, Centro de Aquicultura da UNESP -  CAUNESP http://orcid.org/0000-0003-3579-2530

DOI:

https://doi.org/10.20950/1678-2305.2020.46.2.547

Keywords:

Sex inversion;, monosex fish populations;, aquaculture-species;, native fish.

Abstract

The aim of the study was to establish an effective feminization protocol for Leporinus macrocephalus using the 17β-estradiol (E2). Thus, one hundred and fifty fingerlings with 50 days old post-hatch were randomly distributed in fifteen experimental tanks of 90L and fed for 60 days on a diet supplemented with 50 or 100mg Kg-1 of E2. At the end of the experiment, sex ratios were determined through histological and macroscopic observations. Histologically, the differentiated ovaries were evidenced by the presence of numerous nests of oogonia and oocytes in primary growth stage. The female ratio (73%) for the group treated with 100mg Kg-1 E2 was significantly higher than those of control (52%) and 50mg Kg-1 treatment (48%) groups. These results indicate that 100 mg Kg-1 E2 administered for 60 days was the most effective treatment for 50 days old L. macrocephalus post larval feminization. In conclusion, the successful sex control can be achieved through dietary hormonal manipulation. However, future studies should be conducted to evaluate the economic feasibility of this technique.

References

Alcántar-Vázquez, J.P. 2018. Sex proportion in Nile tilapia Oreochromis niloticus fed estrogen mixtures: a case of paradoxical masculinization. Latin American Journal of Aquatic Research, 46(2): 337-345. http://dx.doi.org/10.3856/vol46-issue2-fulltext-9.

Alcántar-Vázquez, J.P.; Rueda-Curiel, P.; Calzada-Ruí­­z, D.; Antonio-Estrada, C.; Moreno-de la Torre, R. 2015. Feminization of Nile tilapia Oreochromis niloticus by estradiol-17β effects on growth, gonadal development, and
body composition. Hidrobiológica, 25(2): 275-283.

Baroiller, J.F.; D’Cotta, H. 2001. Environment and sex determination in farmed fish. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 130(4): 399-409. http://dx.doi.org/10.1016/S1532-0456(01)00267-8.

Budd, A.M.; Banh, Q.Q.; Domingos, J.A.; Jerry, D.R. 2015. Sex control in fish: approaches, challenges and opportunities for Aquaculture. Journal of Marine Science and Engineering, 3(2): 329-355. http://dx.doi.org/10.3390/jmse3020329.

Capodifoglio, K.R.H.; Adriano, E.A.; Silva, M.R.M.; Maia, A.A.M. 2015. Supplementary data of Henneguya leporinicola (Myxozoa, Myxosporea) a parasite of Leporinus macrocephalus from fish farms in the state of São Paulo, Brazil. Acta Parasitologica, 60(3). http://dx.doi.org/10.1515/ap-2015-0062.

Cnaani, A.; Levavi-Sivan, B. 2009. Sexual development in fish, practical applications for aquaculture. Sexual Development, 3(2-3): 164-175. http://dx.doi.org/10.1159/000223080.

Devlin, R.H.; Nagahama, Y. 2002. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture, 208(3-4): 191-364. http://dx.doi.org/10.1016/S0044-8486(02)00057-1.

Di Rosa, V.; López-Olmeda, J.F.; Burguillo, A.; Frigato, E.; Bertolucci, C.; Piferrer, F.; Sánchez-Vázquez, F.J. 2016. Daily rhythms of the expression of key genes involved in steroidogenesis and gonadal function in zebrafish. PLoS One, 11(6): e0157716. http://dx.doi.org/10.1371/journal.pone.0157716.

Dí­­az, N.; Piferrer, F. 2015. Lasting effects of early exposure to temperature on the gonadal transcriptome at the time of sex differentiation in the European sea bass, a fish with mixed genetic and environmental sex determination. BMC Genomics, 16(1): 679. http://dx.doi.org/10.1186/s12864-015-1862-0.

Duke Energy International-Geração Paranapanema S/A. 2003. Peixes do rio Paranapanema. São Paulo: Horizonte Geográfico, 112p.

Fernandino, J.I.; Hattori, R.S. 2019. Sex determination in Neotropical fish: Implications ranging from aquaculture technology to ecological assessment. General and Comparative Endocrinology, 273(1): 172-183. http://dx.doi.org/10.1016/j.ygcen.2018.07.002.

Giamas, M.T.D.; Vermulm Junior, H. 2004. Levantamento da pesca profissional continental no Estado de São Paulo em 2001. In: São Paulo, Instituto de Pesca. Dados preliminares: bacia do Rio Paranapanema, Paraná e Grande. São Paulo: Instituto de Pesca. p. 1-10. (Série Relatórios Técnicos, 17). Available from: <https://www.pesca.sp.gov.br/17_serreltec.pdf> Access on: 7 July, 2020.

Gí­¶ppert, C.; Harris, R.M.; Theis, A.; Boila, A.; Hohl, S.; Rüegg, A.; Hofmann, H.A.; Salzburger, W.; Bí­¶hne, A. 2016. Inhibition of aromatase induces partial sex change in a cichlid fish: distinct functions for sex steroids in brains and gonads. Sexual Development, 10(2): 97-110. http://dx.doi.org/10.1159/000445463.

Hashimoto, D.T.; Mendonça, F.F.; Senhorini, J.A.; Bortolozzi, J.; Oliveira, C.; Foresti, F.; Porto-Foresti, F. 2010. Identification of hybrids between eotropical fish Leporinus macrocephalus and Leporinus elongatus by PCR RFLP and multiplex-PCR: Tools for genetic monitoring in aquaculture. Aquaculture, 298(3-4): 346-349. http://dx.doi.org/10.1016/j.aquaculture.2009.11.015.

Hoga, C.A.; Almeida, F.L.; Reyes, F.G.R. 2018. A review on the use of hormones in fish farming: analytical methods to determine their residues. CYTA: Journal of Food, 16(1): 679-691. http://dx.doi.org/10.1080/19476337.2018.1475423.

Hunter, G.A.; Donaldson, E.M. 1983. Hormonal sex control and its application to fish culture. In: Hunter, G.A.; Donaldson, E.M. Fish physiology. New York: Academic Press. cap. 5. p. 223-303. http://dx.doi.org/10.1016/S1546-5098(08)60305-2.

IBGE í  Instituto Brasileiro de Geografia e Estatí­­stica. 2018. Pesquisa da pecuária municipal 2018. Available from: <https://sidra.ibge.gov.br/pesquisa/ppm/quadros/brasil/2018> Access on: 6 May, 2020.

Juárez-Juárez, V.; Alcántar-Vázquez, J.P.; Antonio-Estrada, C.; Marí­­n-Ramí­­rez, J.A.; Moreno-de la Torre, R. 2017. Feminization by 17α-ethinylestradiol of the progeny of XY-female Nile tilapia (Oreochromis niloticus). Effects on growth, condition factor and gonadosomatic index. Turkish Journal of Fisheries and Aquatic Sciences, 17(3): 599 607. http://dx.doi.org/10.4194/1303-2712-v17_3_16.

Koyama, T.; Nakamoto, M.; Morishima, K.; Yamashita, R.; Yamashita, T.; Sasaki, K.; Kuruma, Y.; Mizuno, N.; Suzuki, M.; Okada, Y.; Ieda, R.; Uchino, T.; Tasumi, S.; Hosoya, S.; Uno, S.; Koyama, J.; Toyoda, A.;
Kikuchi, K.; Sakamoto, T. 2019. A SNP in a steroidogenic enzyme is associated with phenotypic sex in seriola fishes. Current Biology, 29(11): 1901-1909. http://dx.doi.org/10.1016/j.cub.2019.04.069.

Kwok, H.; So, W.K.; Wang, Y.; Ge, W. 2005. Zebrafish gonadotropins and their receptors: I. cloning and characterization of zebrafish folliclestimulating hormone and luteinizing hormone receptors í  evidence for their distinct functions in follicle development. Biology of Reproduction, 72(6): 1370-1381. http://dx.doi.org/10.1095/biolreprod.104.038190.

Lau, E.S.; Zhang, Z.W.; Qin, M.; Ge, W. 2016. Knockout of zebrafish ovarian aromatase gene (cyp19a1a) by TALEN and CRISPR/Cas9 leads to allmale off spring due to failed ovarian differentiation. Scientific Reports, 6(1): 37357. http://dx.doi.org/10.1038/srep37357.

Lin, S.; Benfey, T.J.; Martin-Robichaud, M.D. 2012. Hormonal sex reversal in Atlantic cod, Gadus morhua. Aquaculture, 364í 365: 192-197. http://dx.doi.org/10.1016/j.aquaculture.2012.08.023.

Lubzens, E.; Bobe, J.; Young, G.; Sullivan, C.V. 2017. Maternal investment in fish oocytes and eggs: The molecular cargo and its contributions to fertility and early development. Aquaculture, 472: 107-143. http://dx.doi.org/10.1016/j.aquaculture.2016.10.029.

Luckenbach, J.A.; Yamamoto, Y.; Guzmán, J.M.; Swanson, P. 2013. Identification of ovarian genes regulated by follicle-stimulating hormone (Fsh) in vitro during early secondary oocyte growth in coho salmon. Molecular and Cellular Endocrinology, 366(1): 38-52. http://dx.doi.org/10.1016/j.mce.2012.11.015.

Marí­­n-Ramí­­rez, J.A.; Alcántar-Vázquez, J.P.; Antonio-Estrada, C.; Moreno-de la Torre, R.; Calzada-Ruiz, D. 2016. Feminization of Nile tilapia Oreochromis niloticus (L.) by diethylstilbestrol: growth and gonadosomatic index. Ecosistemas y Recursos Agropecuarios, 3(7): 51-61.

Miura, T.; Miura, C.; Konda, Y.; Yamauchi, K. 2002. Spermatogenesispreventing substance in Japanese eel. Development, 129(11): 2689-2697.

Morelli, K.A.; Revaldaves, E.; Oliveira, C.; Foresti, F. 2007. Isolation and characterization of eight microsatellite loci in Leporinus macrocephalus (Characiformes: Anostomidae) and cross-species amplification. Molecular Ecology Notes, 7(1): 32-34. http://dx.doi.org/10.1111/j.1471-8286.2006.01484.x.

Muí­±oz, M.E.; Batlouni, S.R.; Vicentini, I.B.F.; Vicentini, C.A. 2011. Testicular structure and description of the seminal pathway in Leporinus macrocephalus (Anostomidae, Teleostei). Micron, 42(8): 892-897. http://dx.doi.org/10.1016/j.micron.2011.06.008.

Nagahama, Y.; Yamashita, M. 2008. Regulation of oocyte maturation in fish. Development, Growth & Differentiation, 50(1): 195-219. http://dx.doi.org/10.1111/j.1440-169X.2008.01019.x.

Nishimura, T.; Tanaka, M. 2014. Gonadal Development in Fish. Sexual Development, 8(5): 252-261. http://dx.doi.org/10.1159/000364924.

í­–rn, S.; Holbech, H.; Norrgren, L. 2016. Sexual disruption in zebrafish (Danio rerio) exposed to mixtures of 17α ethinylestradiol and 17β-trenbolone. Environmental Toxicology and Pharmacology, 41: 225-231. http://dx.doi.org/10.1016/j.etap.2015.12.010.

Pankhurst, N.W. 2016. Reproduction and development. biology of stress in fish. Fish Physiology, 35: 295-331. http://dx.doi.org/10.1016/B978-0-12-802728-8.00008-4.

Peixe BR. 2019. Anuário Peixe BR da piscicultura 2019. São Paulo: Associação Brasileira de Piscicultura, 2019. 148p.

Pereira, T.S.B.; Boscolo, C.N.P.; Moreira, R.G.; Batlouni, S.R. 2017. The use of mGnRHa provokes ovulation but not viable embryos in Leporinus macrocephalus. Aquaculture International, 25(2): 515-529. http://dx.doi.org/10.1007/s10499-016-0049-2.

Pereira, T.S.B.; Boscolo, C.N.P.; Silva, D.G.H.; Batlouni, S.R.; Schlenk, D.; Almeida, E.D. 2015. Anti-androgenic activities of diuron and its metabolites in male Nile tilapia (Oreochromis niloticus). Aquatic Toxicology, 164:
10-15. http://dx.doi.org/10.1016/j.aquatox.2015.04.013.

Petrere Junior, M.; Agostinho, A.A.; Okada, E.K.; Julio Junior, H.F. 2002. Review of the fisheries in the Brazilian portion of the Paraná/Pantanal basin. In: Cowx, I.G. (Ed.). Management and ecology of lake and reservoir fisheries. Oxford: Fishing News Books, p. 123-143.

Piferrer, F. 2001. Endocrine sex control strategies for the feminization of teleost fish. Aquaculture, 197(1-4): 229-281. http://dx.doi.org/10.1016/S0044-8486(01)00589-0.

Piferrer, F.; Ribas, L.; Dí­­az, N. 2012. Genomic approaches to study genetic and environmental influences on fish sex determination and differentiation. Marine Biotechnology, 14(5): 591-604. http://dx.doi.org/10.1007/s10126-012-9445-4.

Pradhan, A.; Olsson, P.E. 2015. Zebrafish sexual behavior: role of sex steroid hormones and prostaglandins. Behavioral and Brain Functions, 11(1): 23. http://dx.doi.org/10.1186/s12993-015-0068-6.

Reidel, A.; Oliveira, L.G.; Piana, P.A.; Lemainski, D.; Bombardelli, R.A.; Boscolo, W.R. 2004. Avaliação de rendimento e caracterí­­sticas morfometricas do curimbatá Prochilodus lineatus (VALENCIENNES, 1836), e do piavuçu Leporinus macrochephalus (GARAVELLO & BRITSKI, 1988) machos e fêmeas. Revista Varia Scientia, 4(8): 71-78.

Riffel, A.P.K.; Garcia, L.O.; Finamor, I.A.; Saccol, E.M.H.; Meira, M.; Kolberg, C.; Horst, A.; Partata, W.; Llesuy, S.; Baldisserotto, B.; Pavanato, M.A. 2012. Redox profile in liver of Leporinus macrocephalus exposed to different dissolved oxygen levels. Fish Physiology and Biochemistry, 38(3): 797-805. http://dx.doi.org/10.1007/s10695-011 9563-3.

Singh, A.K. 2013. Introduction of modern endocrine techniques for the production of monosex population of fishes. General and Comparative Endocrinology, 181: 146-155. http://dx.doi.org/10.1016/j.ygcen.2012.08.027.

Soares, C.M.; Hayashi, C.; Furuya, V.R.B.; Furuya, W.M.; Galdioli, E.M. 2000. Substituição parcial e total da proteí­­na do farelo de soja pela proteí­­na do farelo de canola na alimentação de alevinos de piavuçu (Leporinus macrocephalus, L.). Revista Brasileira de Zootecnia, 29(1): 15-22. http://dx.doi.org/10.1590/S1516-35982000000100003.

Thomas, P.; Dressing, G.; Pang, Y.; Berg, H.; Tubbs, C.; Benninghoff, A.; Doughty, K. 2006. Progestin, estrogen and androgen G-protein coupled receptors in fish gonads. Steroids, 71(4): 310-316. http://dx.doi.org/10.1016/j.steroids.2005.09.015.

Thuong, N.P.; Sung, Y.Y.; Ambak, M.A.; Abol-Munafi, A.B. 2017. The hormone 17 β-estradiol promotes feminization of juveniles protandrous hermaphrodite false clownfish (Amphiprion ocellaris). Marine and Freshwater Behaviour and Physiology, 50(3): 195-204. http://dx.doi.org/10.1080/10236244.2017.1361788.

Tokarz, J.; Mí­¶ller, G.; HrabÄ"º de Angelis, M.; Adamski, J. 2015. Steroids in teleost fishes: a functional point of view. Steroids, 103: 123-144. http://dx.doi.org/10.1016/j.steroids.2015.06.011.

Vernetti, C.H.M.M.; Rodrigues, M.D.N.; Gutierrez, H.J.P.; Calabuig, C.P.; Moreira, C.G.A.; Nlewadim, A.A.; Moreira, H.L.M. 2013. Genes involved in sex determination and the influence of temperature during the sexual differentiation process in fish: a review. African Journal of Biotechnology, 12(17): 2129-2146. http://dx.doi.org/10.5897/AJB12.1155.

Vidal-López, J.M.; Contreras-Sánchez, W.M.; Hernández-Franyutti, A.; Contreras-Garcí­­a, M.J.; Uribe-Aranzábal, M.C. 2019. Functional feminization of the Mexican snook (Centropomus poeyi) using 17β-estradiol in the diet. Latin American Journal of Aquatic Research, 47(2): 240-250. http://dx.doi.org/10.3856/vol47-issue2-fulltext-4.

Downloads

Published

2020-10-03