EFEITO DO 17Î"™-ESTRADIOL NA FEMINIZAÇÃO de <i>Leporinus macrocephalus</i>

Autores

  • Thiago Scremin Boscolo PEREIRA Centro Universitário de Rio Preto -  UNIRP
  • Camila Nomura Pereira BOSCOLO Centro Universitário de Rio Preto -  UNIRP
  • Sergio Ricardo BATLOUNI Universidade Estadual Paulista -  UNESP, Centro de Aquicultura da UNESP -  CAUNESP http://orcid.org/0000-0003-3579-2530

DOI:

https://doi.org/10.20950/1678-2305.2020.46.2.547

Palavras-chave:

Sex inversion;, monosex fish populations;, aquaculture-species;, native fish.

Resumo

O objetivo do estudo foi avaliar o efeito do 17β-estradiol (E2) na feminização de Leporinus macrocephalus. Dessa forma, 150 alevinos com 50 dias de idade foram distribuí­­dos aleatoriamente em 15 tanques experimentais de 90 L e alimentados por 60 dias com dieta suplementada com 50 ou 100 mg kg-1 de E2. No final do experimento, as proporções sexuais foram determinadas por meio de observações histológicas e macroscópicas. Histologicamente, os ovários diferenciados foram evidenciados pela presença de numerosos ninhos de oogonia e oócitos em fase crescimento primário. O percentual de fêmeas (77%) do grupo tratado com 100 mg kg-1 E2 foi significativamente maior comparado ao grupo controle (52%) e ao grupo 50 mg kg-1 (48%). Os resultados obtidos neste estudo inicial indicaram que 100 mg kg-1 de E2, administrados durante 60 dias, foi o tratamento mais efetivo na feminização de L. macrocephalus com 50 dias de idade. No entanto, estudos futuros com variações no intervalo de aplicações podem trazer ainda melhores resultados.

Referências

Alcántar-Vázquez, J.P. 2018. Sex proportion in Nile tilapia Oreochromis niloticus fed estrogen mixtures: a case of paradoxical masculinization. Latin American Journal of Aquatic Research, 46(2): 337-345. http://dx.doi.org/10.3856/vol46-issue2-fulltext-9.

Alcántar-Vázquez, J.P.; Rueda-Curiel, P.; Calzada-Ruí­­z, D.; Antonio-Estrada, C.; Moreno-de la Torre, R. 2015. Feminization of Nile tilapia Oreochromis niloticus by estradiol-17β effects on growth, gonadal development, and
body composition. Hidrobiológica, 25(2): 275-283.

Baroiller, J.F.; D’Cotta, H. 2001. Environment and sex determination in farmed fish. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 130(4): 399-409. http://dx.doi.org/10.1016/S1532-0456(01)00267-8.

Budd, A.M.; Banh, Q.Q.; Domingos, J.A.; Jerry, D.R. 2015. Sex control in fish: approaches, challenges and opportunities for Aquaculture. Journal of Marine Science and Engineering, 3(2): 329-355. http://dx.doi.org/10.3390/jmse3020329.

Capodifoglio, K.R.H.; Adriano, E.A.; Silva, M.R.M.; Maia, A.A.M. 2015. Supplementary data of Henneguya leporinicola (Myxozoa, Myxosporea) a parasite of Leporinus macrocephalus from fish farms in the state of São Paulo, Brazil. Acta Parasitologica, 60(3). http://dx.doi.org/10.1515/ap-2015-0062.

Cnaani, A.; Levavi-Sivan, B. 2009. Sexual development in fish, practical applications for aquaculture. Sexual Development, 3(2-3): 164-175. http://dx.doi.org/10.1159/000223080.

Devlin, R.H.; Nagahama, Y. 2002. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture, 208(3-4): 191-364. http://dx.doi.org/10.1016/S0044-8486(02)00057-1.

Di Rosa, V.; López-Olmeda, J.F.; Burguillo, A.; Frigato, E.; Bertolucci, C.; Piferrer, F.; Sánchez-Vázquez, F.J. 2016. Daily rhythms of the expression of key genes involved in steroidogenesis and gonadal function in zebrafish. PLoS One, 11(6): e0157716. http://dx.doi.org/10.1371/journal.pone.0157716.

Dí­­az, N.; Piferrer, F. 2015. Lasting effects of early exposure to temperature on the gonadal transcriptome at the time of sex differentiation in the European sea bass, a fish with mixed genetic and environmental sex determination. BMC Genomics, 16(1): 679. http://dx.doi.org/10.1186/s12864-015-1862-0.

Duke Energy International-Geração Paranapanema S/A. 2003. Peixes do rio Paranapanema. São Paulo: Horizonte Geográfico, 112p.

Fernandino, J.I.; Hattori, R.S. 2019. Sex determination in Neotropical fish: Implications ranging from aquaculture technology to ecological assessment. General and Comparative Endocrinology, 273(1): 172-183. http://dx.doi.org/10.1016/j.ygcen.2018.07.002.

Giamas, M.T.D.; Vermulm Junior, H. 2004. Levantamento da pesca profissional continental no Estado de São Paulo em 2001. In: São Paulo, Instituto de Pesca. Dados preliminares: bacia do Rio Paranapanema, Paraná e Grande. São Paulo: Instituto de Pesca. p. 1-10. (Série Relatórios Técnicos, 17). Available from: <https://www.pesca.sp.gov.br/17_serreltec.pdf> Access on: 7 July, 2020.

Gí­¶ppert, C.; Harris, R.M.; Theis, A.; Boila, A.; Hohl, S.; Rüegg, A.; Hofmann, H.A.; Salzburger, W.; Bí­¶hne, A. 2016. Inhibition of aromatase induces partial sex change in a cichlid fish: distinct functions for sex steroids in brains and gonads. Sexual Development, 10(2): 97-110. http://dx.doi.org/10.1159/000445463.

Hashimoto, D.T.; Mendonça, F.F.; Senhorini, J.A.; Bortolozzi, J.; Oliveira, C.; Foresti, F.; Porto-Foresti, F. 2010. Identification of hybrids between eotropical fish Leporinus macrocephalus and Leporinus elongatus by PCR RFLP and multiplex-PCR: Tools for genetic monitoring in aquaculture. Aquaculture, 298(3-4): 346-349. http://dx.doi.org/10.1016/j.aquaculture.2009.11.015.

Hoga, C.A.; Almeida, F.L.; Reyes, F.G.R. 2018. A review on the use of hormones in fish farming: analytical methods to determine their residues. CYTA: Journal of Food, 16(1): 679-691. http://dx.doi.org/10.1080/19476337.2018.1475423.

Hunter, G.A.; Donaldson, E.M. 1983. Hormonal sex control and its application to fish culture. In: Hunter, G.A.; Donaldson, E.M. Fish physiology. New York: Academic Press. cap. 5. p. 223-303. http://dx.doi.org/10.1016/S1546-5098(08)60305-2.

IBGE í  Instituto Brasileiro de Geografia e Estatí­­stica. 2018. Pesquisa da pecuária municipal 2018. Available from: <https://sidra.ibge.gov.br/pesquisa/ppm/quadros/brasil/2018> Access on: 6 May, 2020.

Juárez-Juárez, V.; Alcántar-Vázquez, J.P.; Antonio-Estrada, C.; Marí­­n-Ramí­­rez, J.A.; Moreno-de la Torre, R. 2017. Feminization by 17α-ethinylestradiol of the progeny of XY-female Nile tilapia (Oreochromis niloticus). Effects on growth, condition factor and gonadosomatic index. Turkish Journal of Fisheries and Aquatic Sciences, 17(3): 599 607. http://dx.doi.org/10.4194/1303-2712-v17_3_16.

Koyama, T.; Nakamoto, M.; Morishima, K.; Yamashita, R.; Yamashita, T.; Sasaki, K.; Kuruma, Y.; Mizuno, N.; Suzuki, M.; Okada, Y.; Ieda, R.; Uchino, T.; Tasumi, S.; Hosoya, S.; Uno, S.; Koyama, J.; Toyoda, A.;
Kikuchi, K.; Sakamoto, T. 2019. A SNP in a steroidogenic enzyme is associated with phenotypic sex in seriola fishes. Current Biology, 29(11): 1901-1909. http://dx.doi.org/10.1016/j.cub.2019.04.069.

Kwok, H.; So, W.K.; Wang, Y.; Ge, W. 2005. Zebrafish gonadotropins and their receptors: I. cloning and characterization of zebrafish folliclestimulating hormone and luteinizing hormone receptors í  evidence for their distinct functions in follicle development. Biology of Reproduction, 72(6): 1370-1381. http://dx.doi.org/10.1095/biolreprod.104.038190.

Lau, E.S.; Zhang, Z.W.; Qin, M.; Ge, W. 2016. Knockout of zebrafish ovarian aromatase gene (cyp19a1a) by TALEN and CRISPR/Cas9 leads to allmale off spring due to failed ovarian differentiation. Scientific Reports, 6(1): 37357. http://dx.doi.org/10.1038/srep37357.

Lin, S.; Benfey, T.J.; Martin-Robichaud, M.D. 2012. Hormonal sex reversal in Atlantic cod, Gadus morhua. Aquaculture, 364í 365: 192-197. http://dx.doi.org/10.1016/j.aquaculture.2012.08.023.

Lubzens, E.; Bobe, J.; Young, G.; Sullivan, C.V. 2017. Maternal investment in fish oocytes and eggs: The molecular cargo and its contributions to fertility and early development. Aquaculture, 472: 107-143. http://dx.doi.org/10.1016/j.aquaculture.2016.10.029.

Luckenbach, J.A.; Yamamoto, Y.; Guzmán, J.M.; Swanson, P. 2013. Identification of ovarian genes regulated by follicle-stimulating hormone (Fsh) in vitro during early secondary oocyte growth in coho salmon. Molecular and Cellular Endocrinology, 366(1): 38-52. http://dx.doi.org/10.1016/j.mce.2012.11.015.

Marí­­n-Ramí­­rez, J.A.; Alcántar-Vázquez, J.P.; Antonio-Estrada, C.; Moreno-de la Torre, R.; Calzada-Ruiz, D. 2016. Feminization of Nile tilapia Oreochromis niloticus (L.) by diethylstilbestrol: growth and gonadosomatic index. Ecosistemas y Recursos Agropecuarios, 3(7): 51-61.

Miura, T.; Miura, C.; Konda, Y.; Yamauchi, K. 2002. Spermatogenesispreventing substance in Japanese eel. Development, 129(11): 2689-2697.

Morelli, K.A.; Revaldaves, E.; Oliveira, C.; Foresti, F. 2007. Isolation and characterization of eight microsatellite loci in Leporinus macrocephalus (Characiformes: Anostomidae) and cross-species amplification. Molecular Ecology Notes, 7(1): 32-34. http://dx.doi.org/10.1111/j.1471-8286.2006.01484.x.

Muí­±oz, M.E.; Batlouni, S.R.; Vicentini, I.B.F.; Vicentini, C.A. 2011. Testicular structure and description of the seminal pathway in Leporinus macrocephalus (Anostomidae, Teleostei). Micron, 42(8): 892-897. http://dx.doi.org/10.1016/j.micron.2011.06.008.

Nagahama, Y.; Yamashita, M. 2008. Regulation of oocyte maturation in fish. Development, Growth & Differentiation, 50(1): 195-219. http://dx.doi.org/10.1111/j.1440-169X.2008.01019.x.

Nishimura, T.; Tanaka, M. 2014. Gonadal Development in Fish. Sexual Development, 8(5): 252-261. http://dx.doi.org/10.1159/000364924.

í­–rn, S.; Holbech, H.; Norrgren, L. 2016. Sexual disruption in zebrafish (Danio rerio) exposed to mixtures of 17α ethinylestradiol and 17β-trenbolone. Environmental Toxicology and Pharmacology, 41: 225-231. http://dx.doi.org/10.1016/j.etap.2015.12.010.

Pankhurst, N.W. 2016. Reproduction and development. biology of stress in fish. Fish Physiology, 35: 295-331. http://dx.doi.org/10.1016/B978-0-12-802728-8.00008-4.

Peixe BR. 2019. Anuário Peixe BR da piscicultura 2019. São Paulo: Associação Brasileira de Piscicultura, 2019. 148p.

Pereira, T.S.B.; Boscolo, C.N.P.; Moreira, R.G.; Batlouni, S.R. 2017. The use of mGnRHa provokes ovulation but not viable embryos in Leporinus macrocephalus. Aquaculture International, 25(2): 515-529. http://dx.doi.org/10.1007/s10499-016-0049-2.

Pereira, T.S.B.; Boscolo, C.N.P.; Silva, D.G.H.; Batlouni, S.R.; Schlenk, D.; Almeida, E.D. 2015. Anti-androgenic activities of diuron and its metabolites in male Nile tilapia (Oreochromis niloticus). Aquatic Toxicology, 164:
10-15. http://dx.doi.org/10.1016/j.aquatox.2015.04.013.

Petrere Junior, M.; Agostinho, A.A.; Okada, E.K.; Julio Junior, H.F. 2002. Review of the fisheries in the Brazilian portion of the Paraná/Pantanal basin. In: Cowx, I.G. (Ed.). Management and ecology of lake and reservoir fisheries. Oxford: Fishing News Books, p. 123-143.

Piferrer, F. 2001. Endocrine sex control strategies for the feminization of teleost fish. Aquaculture, 197(1-4): 229-281. http://dx.doi.org/10.1016/S0044-8486(01)00589-0.

Piferrer, F.; Ribas, L.; Dí­­az, N. 2012. Genomic approaches to study genetic and environmental influences on fish sex determination and differentiation. Marine Biotechnology, 14(5): 591-604. http://dx.doi.org/10.1007/s10126-012-9445-4.

Pradhan, A.; Olsson, P.E. 2015. Zebrafish sexual behavior: role of sex steroid hormones and prostaglandins. Behavioral and Brain Functions, 11(1): 23. http://dx.doi.org/10.1186/s12993-015-0068-6.

Reidel, A.; Oliveira, L.G.; Piana, P.A.; Lemainski, D.; Bombardelli, R.A.; Boscolo, W.R. 2004. Avaliação de rendimento e caracterí­­sticas morfometricas do curimbatá Prochilodus lineatus (VALENCIENNES, 1836), e do piavuçu Leporinus macrochephalus (GARAVELLO & BRITSKI, 1988) machos e fêmeas. Revista Varia Scientia, 4(8): 71-78.

Riffel, A.P.K.; Garcia, L.O.; Finamor, I.A.; Saccol, E.M.H.; Meira, M.; Kolberg, C.; Horst, A.; Partata, W.; Llesuy, S.; Baldisserotto, B.; Pavanato, M.A. 2012. Redox profile in liver of Leporinus macrocephalus exposed to different dissolved oxygen levels. Fish Physiology and Biochemistry, 38(3): 797-805. http://dx.doi.org/10.1007/s10695-011 9563-3.

Singh, A.K. 2013. Introduction of modern endocrine techniques for the production of monosex population of fishes. General and Comparative Endocrinology, 181: 146-155. http://dx.doi.org/10.1016/j.ygcen.2012.08.027.

Soares, C.M.; Hayashi, C.; Furuya, V.R.B.; Furuya, W.M.; Galdioli, E.M. 2000. Substituição parcial e total da proteí­­na do farelo de soja pela proteí­­na do farelo de canola na alimentação de alevinos de piavuçu (Leporinus macrocephalus, L.). Revista Brasileira de Zootecnia, 29(1): 15-22. http://dx.doi.org/10.1590/S1516-35982000000100003.

Thomas, P.; Dressing, G.; Pang, Y.; Berg, H.; Tubbs, C.; Benninghoff, A.; Doughty, K. 2006. Progestin, estrogen and androgen G-protein coupled receptors in fish gonads. Steroids, 71(4): 310-316. http://dx.doi.org/10.1016/j.steroids.2005.09.015.

Thuong, N.P.; Sung, Y.Y.; Ambak, M.A.; Abol-Munafi, A.B. 2017. The hormone 17 β-estradiol promotes feminization of juveniles protandrous hermaphrodite false clownfish (Amphiprion ocellaris). Marine and Freshwater Behaviour and Physiology, 50(3): 195-204. http://dx.doi.org/10.1080/10236244.2017.1361788.

Tokarz, J.; Mí­¶ller, G.; HrabÄ"º de Angelis, M.; Adamski, J. 2015. Steroids in teleost fishes: a functional point of view. Steroids, 103: 123-144. http://dx.doi.org/10.1016/j.steroids.2015.06.011.

Vernetti, C.H.M.M.; Rodrigues, M.D.N.; Gutierrez, H.J.P.; Calabuig, C.P.; Moreira, C.G.A.; Nlewadim, A.A.; Moreira, H.L.M. 2013. Genes involved in sex determination and the influence of temperature during the sexual differentiation process in fish: a review. African Journal of Biotechnology, 12(17): 2129-2146. http://dx.doi.org/10.5897/AJB12.1155.

Vidal-López, J.M.; Contreras-Sánchez, W.M.; Hernández-Franyutti, A.; Contreras-Garcí­­a, M.J.; Uribe-Aranzábal, M.C. 2019. Functional feminization of the Mexican snook (Centropomus poeyi) using 17β-estradiol in the diet. Latin American Journal of Aquatic Research, 47(2): 240-250. http://dx.doi.org/10.3856/vol47-issue2-fulltext-4.

Downloads

Publicado

2020-10-03

Edição

Seção

Nota cientí­­fica (Short Communication)