TILAPIA CULTIVATED IN A LOW-SALINITY BIOFLOC SYSTEM SUPPLEMENTED WITH <i>Chlorella vulgaris</i> AND DIFFERENTS MOLASSES APPLICATION RATES
DOI:
https://doi.org/10.20950/1678-2305.2019.45.4.494Keywords:
microalgae;, carbohydrate;, proximate composition, zootechnical performance, hematological indicesAbstract
The aim of this study was to evaluate the effect of supplementation with Chlorella vulgaris and molasses application rates on water quality, zootechnical performance, proximate composition and health status of Nile tilapia (Oreochromis niloticus) fingerlings cultivated in low-salinity (10 g L-1) biofloc systems. Four treatments were tested in a factorial design (supplemented with microalgae and molasses application rates): BFT-C30 (Biofloc supplemented with C. vulgaris and molasses application rates of 30% of the total daily feed); BFT-30 (Biofloc with molasses application rates of 30% of the total daily feed); BFT-C50 (Biofloc supplemented with C. vulgaris and molasses application rates of 50% of the total daily feed) and BFT-50 (Biofloc with molasses application rates of 50% of the total daily feed), for 70 days. Fingerlings of O. niloticus (initial mean weight of 3.15 ± 0.5 g) were stocked at a density of 680 fish m-3 in experimental units (50L), where 50% of this volume was biofloc previously matured. Throughout the experiment, they were supplemented with C. vulgaris every five days at the concentration of 5x104 cells mL-1. A significant interaction between supplementation with C. vulgaris and molasses application rates for final weight and length, survival, feed conversion ratio, specific growth rate, water consumption, protein efficiency ratio, sedimentation time, planktonic community and hematological indices were observed. The results indicated that the high molasses application rates (50%) in the biofloc system affects the zootechnical performance, water consumption, sedimentation time and the hematological indices of the Nile Tilapia fingerlings, hampering their development. Therefore, molasses application rates of 30% of the total daily feed for the tilapia fingerlings culture in low-salinity biofloc system is recommended.
References
AOAC í Association of Official Analytical Chemists. 2012. Official methods of analysis. 19th ed. Gaithersburg: AOAC. 3000p.
APHA í American Public Health Association. 2005. Standard methods for the examination of water and wastewater. Washington: APHA. 560p.
Arantes, R.; Schveitzer, R.; Magnotti, C.; Lapa, K.R.; Vinatea, L. 2017. A comparison between water exchange and settling tank as a method for suspended solids management in intensive biofloc technology systems: effects on shrimp (Litopenaeus vannamei) performance, water quality and water use. Aquaculture Research, 48(4): 1478-1490. http://dx.doi.org/10.1111/are.12984.
Araújo, M.T.; Braga, I.F.M.; Cisneros, S.V.; Silva, S.M.B.C.; Gálvez, A.O.; Correia, E.S. 2019. The intensive culture of nile tilapia supplemented with the microalgae Chlorella vulgaris in a biofloc system. Boletim do Instituto de Pesca, 45(2): e398. http://dx.doi.org/10.20950/1678-2305.2019.45.2.398.
Avnimelech, Y. 2007. Feeding with microbial flocs by tilápia in minimal discharge bioflocs technology ponds. Aquaculture, 264(1-4): 140-147. http://dx.doi.org/10.1016/j.aquaculture.2006.11.025.
Avnimelech, Y. 2012. Biofloc technology: a practical guide book. 2nd ed. Louisiana: The Word Aquaculture Society. 272p.
Avnimelech, Y. 2015. Biofloc technology: a practical guide book. 3rd ed. Louisiana: The Word Aquaculture Society. 258p.
Azim, M.; Little, D. 2008. The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilápia (Oreochromis niloticus). Aquaculture, 283(1-4): 29-35. http://dx.doi.org/10.1016/j.aquaculture.2008.06.036.
Bicudo, C.E.; Menezes, M.A. 2006. Gêneros de algas continentais do Brasil: chave para identificação e descrições. 2ª ed. São Carlos: Rima. 502p.
Boeuf, G.; Payan, P. 2001. Review how should salinity influence fish growth? Comparative Biochemistry and Physiology Part C, 130(4): 411-423. http://dx.doi.org/10.1016/S1532-0456(01)00268-X. PMid:11738629.
Brasil, 2012. Programa Água Doce: documento base. Brasília: Ministério do Meio Ambiente (MMA). 324p.
Brol, J.; Pinho, S.M.; Sgnaulin, T.; Pereira, K.R.; Thomas, M.C.; Mello, G.L.; Miranda-Baeza, A.; Emerenciano, M.G.C. 2017. Tecnologia de bioflocos (BFT) no desempenho zootécnico de tilápias: efeito da linhagem e densidades de estocagem. Archivos de Zootecnia, 66(254): 229-235. http://dx.doi.org/10.21071/az.v66i254.2326.
Costa, D.V.; Ferreira, M.W.; Navarro, R.D.; Rosa, P.V.; Murgas, L.D.S. 2014. Parí¢metros hematológicos de tilápias-do-Nilo (Oreochromis niloticus) alimentadas com diferentes fontes de óleo. Revista Brasileira de Saúde e Produção Animal, 15(3): 754-764. http://dx.doi.org/10.1590/S1519-99402014000300023.
Craig, S.; Helfrich, L.A. 2002. Understanding fish nutrition, feeds, and feeding. Virginia: Virginia Cooperative Extension. 4p. Publication 420-256.
De-Schryver, P.; Crab, R.; Defoirdt, T.; Boon, N.; Verstraete, W. 2008. The basics of bio-flocs technology: the added value for Aquaculture. Aquaculture, 277(3): 125-137. http://dx.doi.org/10.1016/j.aquaculture.2008.02.019.
Ebeling, J.M.; Timmons, M.B.; Bisogni, J.J. 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture, 257(1-4): 346-358. http://dx.doi.org/10.1016/j.aquaculture.2006.03.019.
Einen, O.; Roem, A.J. 1997. Dietary protein/energy ratios for Atlantic salmon in relation to fish size: growth, feed utilization and slaughter quality. Aquaculture Nutrition, 3(2): 115-126. http://dx.doi.org/10.1046/j.1365-2095.1997.00084.x.
El-Sayed, E.M. 2006. Tilapia culture. Wallingford: CABI Publishing. 277p. http://dx.doi.org/10.1079/9780851990149.0000.
Emerenciano, M.; Martínez-Córdova, L.R.; Martínez-Porchas, M.; Miranda-Baeza, A. 2017. Biofloc Technology (BFT): a tool for water quality management in aquaculture. In: Tutu, H. (Ed.). Water quality. New York: InTech. p. 91-109.
Felfí¶ldy, L.; Szabo, E.; Tothl, L. 1987. A biológiai vizminí¶sités. Hungary: Vizügyi Hodrobiológia. 258p.
Food and Agriculture Organization of the United Nations í FAO. 2018. The state of world fisheries and aquaculture 2018: meeting the sustainable development goals. Rome: FAO. 227p.
Furuya, W.M. 2010. Tabelas brasileiras para a nutrição de tilapias. Toledo: GFM. 100p.
Furuya, W.M.; Botaro, D.; Macedo, R.M.G.; Santos, V.G.; Silva, L.C.R.; Silva, T.C.; Furuya, V.R.B.; Sales, P.J.P. 2005. Aplicação do conceito de proteína ideal para redução dos níveis de proteína em dietas para Tilápia-do-Nilo (Oreochromis niloticus). Revista Brasileira de Zootecnia, 34(5): 1433-1441. http://dx.doi.org/10.1590/S1516-35982005000500002.
Goldenfarb, P.B.; Bowyer, F.P.; Hall, E.; Brosious, E. 1971. Reproductibility in the hematology laboratory: the microhematocrit determination. American Journal of Clinical Pathology, 56(1): 35-39. http://dx.doi.org/10.1093/ajcp/56.1.35. PMid:5556212.
Golterman, H.J.; Clyno, R.S.; Ohnstad, M.A. 1978. Methods for physical and chemical analysis of freshwaters. London: Blackwell Scientific Publications. 213p.
Hargreaves, J.A. 2006. Photosynthetic suspended-growth systems in aquaculture. Aquacultural Engineering, 34(3): 344-363. http://dx.doi.org/10.1016/j.aquaeng.2005.08.009.
Hoek, C.; Mann, D.; Jahns, H.M. 1995. Algae: an introduction to Phycology. Cambridge: Cambridge University Press. 623p.
Iwama, G.K.; Vijayan, M.M.; Forsyth, R.B.; Ackerman, P.A. 1999. Heat shock proteins and physiological stress in fish. Integrative and Comparative Biology, 39(6): 901-909. http://dx.doi.org/10.1093/icb/39.6.901.
Jung, J.Y.; Damusaru, J.H.; Park, Y.; Kim, K.; Seong, M.; Je, H.W.; Kim, S.; Bai, S.C. 2017. Autotrophic biofloc technology system (ABFT) using Chlorella vulgaris and Scenedesmus obliquus positively affects performance of Nile tilapia (Oreochromis niloticus). Algal Research, 27(1): 259-264. http://dx.doi.org/10.1016/j.algal.2017.09.021.
Kaushik, S.J.; Oliva Teles, A. 1985. Effect of digestible energy on nitrogen and energy balance in rainbow trout. Aquaculture, 50(1-2): 89-101. http://dx.doi.org/10.1016/0044-8486(85)90155-3.
Koroleff, F. 1976. Determination of nutrients. In: Grasshoff, K. (Ed.). Methods of seawater analysis. New York: Verlag Chemie Weinhein. p. 117-187.
Krummenauer, D.; Peixoto, S.; Cavalli, R.O.; Poersch, L.H.; Wasielesky Junior, W. 2011. Superintensive cultue of white shrimp, Litopenaeus vannamei, in a biofloco technology system in shouter Brazil at different stocking densities. Journal of the World Aquaculture Society, 42(5): 726-733. http://dx.doi.org/10.1111/j.1749-7345.2011.00507.x.
Kuo, C.M.; Jian, J.F.; Lin, T.H.; Chang, Y.B.; Wan, X.H.; Lai, J.T.; Chang, J.S.; Lin, C.S. 2016. Simultaneous microalgal biomass production and CO2 fixation by cultivating Chlorella sp. GD with aquaculture wastewater and boiler flue gas. Bioresource Technology, 221(1): 241-250. http://dx.doi.org/10.1016/j.biortech.2016.09.014. PMid:27643732.
Lima, P.C.M.; Abreu, J.L.; Silva, A.E.M.; Severi, W.; Gálvez, A.O.; Brito, L.O. 2018. Nile tilapia fingerling cultivated in a low-salinity biofloc system at different stocking densities. Spanish Journal of Agricultural Research, 16(4): e0612. http://dx.doi.org/10.5424/sjar/2018164-13222.
Liu, G.; Zhu, S.; Liu, D.; Ye, Z. 2018. Effect of the C/N ratio on inorganic nitrogen control and the growth and physiological parameters of tilapias fingerlings, Oreochromis niloticu reared in biofloc systems. Aquaculture Research, 49(7): 2429-2439. http://dx.doi.org/10.1111/are.13702.
Long, L.; Yang, J.; Li, Y.; Guan, C.; Wu, F. 2015. Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus). Aquaculture, 448(1): 135-141. http://dx.doi.org/10.1016/j.aquaculture.2015.05.017.
Luo, G.; Gao, Q.; Wang, C.; Liu, W.; Sun, D.; Li, L.; Tan, H. 2014. Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture, 422-423(1): 1-7. http://dx.doi.org/10.1016/j.aquaculture.2013.11.023.
MacKereth, F.J.H.; Heron, J.; Talling, J.F. 1978. Water analysis: some revised methods for limnologists. London: Blackwell Scientific Publications. 120p.
Malbrouck, C.; Kestemont, P. 2006. Effects of microcystins on fish. Environmental Toxicology and Chemistry, 25(1): 72-86. http://dx.doi.org/10.1897/05-029R.1. PMid:16494227.
Marinho, Y.F.; Brito, L.O.; Silva Campos, C.V.F.; Severi, W.; Andrade, H.A.; Galvez, A.O. 2017. Effect of the addition of Chaetoceros calcitrans, Navicula sp. and Phaeodactylum tricornutum (diatoms) on phytoplankton composition and growth of Litopenaeus vannamei (Boone) postlarvae cultivated in a biofloc system. Aquaculture Research, 48(8): 4155-4416. http://dx.doi.org/10.1111/are.13235.
Martins, G.P.; Pezzato, L.E.; Guimarães, I.G.; Padovani, C.R.; Mazini, B.S.M.; Barros, M.M. 2017. Antinutritional factors of raw soybean on growth and haematological responses of Nile tilapia. Boletim do Instituto de Pesca, 43(2): 322-333. http://dx.doi.org/10.20950/1678-2305.2017v43n3p322.
Miranda, M.P.; Benito, G.G.; Cristobal, N.S.; Nieto, C.H. 1996. Color elimination from molasses wastewater by Aspergillus niger. Bioresource Technology, 57(3): 229-235. http://dx.doi.org/10.1016/S0960-8524(96)00048-X.
Miranda-Baeza, A.; Mariscal-López, M.A.; López-Elías, J.A.; Rivas-Vega, M.E.; Emerenciano, M.; Sánchez-Romero, A.; Esquer-Méndez, J.L. 2017. Effect of inoculation of the cyanobacteria Oscillatoria sp. on tilapia biofloc culture. Aquaculture Research, 48(9): 4725-4734. http://dx.doi.org/10.1111/are.13294.
Najafpour, G.D.; Shan, C.P. 2003. Enzymatic hydrolysis of molasses. Bioresource Technology, 86(1): 91-94. http://dx.doi.org/10.1016/S0960-8524(02)00103-7. PMid:12421015.
Pereira, D.S.P.; Guerra-Santos, B.; Moreira, E.L.T.; Albinati, R.C.B.; Ayres, M.C.C. 2016. Parí¢metros hematológicos e histológicos de tilápia do nilo em resposta ao desafio de diferentes níveis de salinidade. Boletim do Instituto de Pesca, 42(3): 635-647. http://dx.doi.org/10.20950/1678-2305.2016v42n3p635.
Pereira-Neto, J.B.; Dantas, D.M.M.; Gálvez, A.O.; Brito, L.O. 2008. Avaliação das comunidades planctônica e bentônica de microalgas em viveiros de camarão (Litopenaeus vannamei). Boletim do Instituto de Pesca, 34(4): 543-551.
Pérez-Fuentes, J.A.; Hernández-Vergara, M.P.; Pérez-Rostro, C.I.; Fogel, I. 2016. C:N ratios affect nitrogen removal and production of Nile tilapia Oreochromis niloticus raised in a biofloc system under high density cultivation. Aquaculture, 452(1): 247-251. http://dx.doi.org/10.1016/j.aquaculture.2015.11.010.
Posadas, E.; Morales, M.M.; Gomez, C.; Acién, F.G.; Muí±oz, R. 2015. Influence of pH and CO2 source on the performance of microalgae-based secondary domestic wastewater treatment in outdoors pilot raceways. Chemical Engineering Journal, 265(1): 239-248. http://dx.doi.org/10.1016/j.cej.2014.12.059.
Prajapati, S.K.; Choudhary, P.; Malik, A.; Vijay, V.K. 2014. Algae mediated treatment and bioenergy generation process for handling liquid and solid waste from dairy cattle farm. Bioresource Technology, 167(1): 260-268. http://dx.doi.org/10.1016/j.biortech.2014.06.038. PMid:24994683.
Righetti, J.S.; Furuya, W.M.; Conejero, C.I.; Graciano, T.S.; Vidal, L.V.O.; Michellato, M. 2011. Redução da proteína em dietas para tilápias-do-nilo por meio da suplementação de aminoácidos com base no conceito de proteína ideal. Revista Brasileira de Zootecnia, 40(3): 469-476. http://dx.doi.org/10.1590/S1516-35982011000300002.
Ruiz, J.; Álvarez, P.; Arbib, Z.; Garrido, C.; Barragán, J.; Perales, J.A. 2011. Effect of nitrogen and phosphorus concentration on their removal kinetic in treated urban wastewater by Chlorella vulgaris. International Journal of Phytoremediation, 13(9): 884-896. http://dx.doi.org/10.1080/15226514.2011.573823. PMid:21972511.
Salvador, R.; Claudiano, G.S.; Loureiro, B.A.; Marcusso, P.F.; Eto, S.F.; Pilarski, F.; Toazza, C.S.; Moraes, J.R.E.; Moraes, F.R. 2013. Desempenho e hematologia de tilápias-do-nilo alimentadas com dieta suplementada com Saccharomyces cerevisiae, vacinadas e desafiadas com Streptococcus agalactiae. Pesquisa Agropecuária Brasileira, 48(8): 892-898. http://dx.doi.org/10.1590/S0100-204X2013000800012.
Samocha, T.M.; Prangnell, D.I.; Hanson, T.R.; Treece, G.D.; Morris, T.C.; Castro, L.F.; Staresinic, N. 2017. Design and operation of super intensive, biofloc-dominated systems for indoor production of the Pacific White Shrimp, Litopenaeus vannamei: the Texas A&M AgriLife Research Experience. Louisiana: The World Aquaculture Society. 398p.
Signor, A.; Barros, M.M.; Pezzato, L.E.; Falcon, D.R.; Guimarães, I.G. 2010. Parí¢metros hematológicos da tilápia-do-nilo: efeito da dieta suplementada com levedura e zinco e do estímulo pelo frio. Ciência Animal Brasileira, 11(3): 509-519. http://dx.doi.org/10.5216/cab.v11i3.6016.
Silva, K.R.; Wasielesky Junior, W.; Abreu. 2013. Nitrogen and Phosphorus Dynamics in the Biofloc Production of the Pacific White Shrimp, Litopenaeus vannamei. Journal of the World Aquaculture Society, 44(1): 30-41. http://dx.doi.org/10.1111/jwas.12009.
Singh, R.; Birru, R.; Sibi, G. 2017. Nutrient removal efficiencies of Chlorella vulgaris from urban wastewater for reduced eutrophication. Journal of Environmental Protection, 8(1): 1-11. http://dx.doi.org/10.4236/jep.2017.81001.
Soares, T.M.; Silva, I.J.O.; Duarte, S.N.; Silva, E.F.F. 2006. Destinação de águas residuárias provenientes do processo de dessalinização por osmose reversa. Revista Brasileira de Engenharia Agrícola e Ambiental, 10(3): 730-737. http://dx.doi.org/10.1590/S1415-43662006000300028.
Strickland, J. 1960. Measuring the production of marine phytoplankton. Ottawa: Fisheries Research Board of Canada. 172p. (Bulletin).
Tavares-Dias, M. 2015. Parí¢metros sanguíneos de referência para espécies de peixes cultivados. In: Tavares-Dias, M.; Mariano, W.S. Aquicultura no Brasil: novas perspectivas. São Paulo: Pedro & João. p. 11-30.
Tavares-Dias, M.; Moraes, F.R.; Martins, M.L.; Santana, A.E. 2002. Haematological changes in Oreochromis niloticus Linnaeus, 1758 (Osteichthyes: Cichlidae) with Gill Ichthyophthiriasis and Saprolegniosis. Boletim do Instituto de Pesca, 28(1): 1-9.
Turker, H.; Eversole, A.G.; Brune, D.E. 2003. Filtration of green algae and cyanobacteria by Nile tilapia, Oreochromis niloticus, in the Partitioned Aquaculture System. Aquaculture, 215(1): 93-101. http://dx.doi.org/10.1016/S0044-8486(02)00133-3.
Ueda, I.K.; Egami, M.I.; Sassp, W.S.; Matushima, E.R. 1997. Estudos hematológicos em Oreochromis niloticus (Linnaeus, 1758) (Cichlidae, Teleostei). Parte I. Brazilian Journal of Veterinary Research and Animal Science, 34(5): 270-275. http://dx.doi.org/10.11606/issn.2318-3659.v34i5p270-275.
Vinatea, L.; Galvez, A.O.; Browdy, C.L.; Stokes, A.; Venero, J.; Haveman, J.; Lewis, B.L.; Lawson, A.; Shuler, A.; Leffler, J.W. 2010. Photosynthesis, water respiration and growth performance of Litopenaeus vannamei in a super-intensive raceway culture with zero water exchange: interaction of water quality variables. Aquacultural Engineering, 42(1): 17-24. http://dx.doi.org/10.1016/j.aquaeng.2009.09.001.
Wintrobe, M.M. 1934. Variations on the size and haemoglobin content of erythrocytes in the blood of various vertebrates. Folia Haematologica, 51(32): 32-49.
Xu, W.J.; Morris, T.C.; Samocha, T.M. 2016. Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture, 453(1): 169-175. http://dx.doi.org/10.1016/j.aquaculture.2015.11.021.
Yeh, K.; Chang, J. 2012. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresource Technology, 105(1): 120-127. http://dx.doi.org/10.1016/j.biortech.2011.11.103. PMid:22189073.
Zapata-Lovera, K.P.; Brito, L.O.; Lima, P.C.M.; Vinatea-Arana, L.A.; Galvez, A.O.; Cárdenas, J.M.V. 2017. Cultivo de alevines de tilapia en sistema biofloc bajo diferentes relaciones carbono/nitrógeno. Boletim do Instituto de Pesca, 43(3): 399-407. http://dx.doi.org/10.20950/1678-2305.2017v43n3p399.