LIMNOLOGICAL ASPECTS OF A SHALLOW POND USED AS RECEIVER AQUACULTURE WASTES AND FOR AGRICULTURAL IRRIGATION

Authors

DOI:

https://doi.org/10.20950/1678-2305/bip.2021.47.e609

Keywords:

water parameters;, climatic seasons;, zooplankton;, sediment.

Abstract

Water samples, zooplankton community and sediment samples were analyzed at three sites in a pond receiving wastes, bi-weekly for seven months, covering the rainy and dry seasons. Water quality parameters failed to show significant differences between the sites for turbidity, total suspended solids, dissolved oxygen, transparency, conductivity, alkalinity and total phosphorous. Only temperature was different between the seasons. In the case of sediment, only aluminum (Al) was not different during the experimental period when highest calcium (Ca) concentrations were reported. The relative abundance of Rotifera during the sampling period reached 80-96% (rainy season) and 59-98% (dry season) in total zooplankton. Current study demonstrated that the water quality of shallow pond associated with allochthonous materials from aquaculture farm significantly influenced the structure of zooplankton assemblage due to high nutrient concentrations, conductivity, alkalinity and chlorophyll-a causing more fertilized water. However, heavy rains (February-April) and continuous water flow favored aeration (dissolved oxygen >5.2 ± 1 mg L-1). The use of pond water for agricultural irrigation or for other purposes, must be analyzed more effectively, avoiding problems caused by its usage.

References

Abubackar, M.M.; Abubackar, Y. 2013. Some aspects of the limnology of Nguru lake, northeastern Nigeria. International Journal of Basic and Applied Sciences, 2(2): 140-144. https://doi.org/10.14419/ijbas.v2i2.691.

APHA í  American Public Health Association; AWWA í  American Water Works Association; WPCF í  Water Environment Federation. 1998. Standard methods for the examination of water and wastewater. Washington, D.C.: APHA-AWWA-WPCF. 1031p.

Boyd, C.E.; Tucker, C.C. 1992. Water quality and pond soil analyses for aquaculture. Auburn, USA: Alabama Agricultural Experiment Station. 188p.

Cavalcante-Júnior, V.; Andrade, L.N.; Bezerra, L.N.; Gurjão, L.M.; Farias, W.L. 2005. Reuso de água em um sistema integrado com peixes, sedimentação, ostras e macroalgas. Revista Brasileira de Engenharia Agrí­­cola e Ambiental, 9(1): 118-122.

Chen, G.; Dalton, C.; Taylor, D. 2010. Cladocera as indicators of trophic state in Irish lakes. Journal of Paleolimnology, 44: 465-481. https://doi.org/10.1007/s10933-010-9428-2.

Dong, X.; Huang, L.; Li, T.; Xu, J.W.; Zhao, P.; Yu, X. 2019. The enhanced biomass and lipid accumulation in algae with an integrated treatment strategy by waste molasses and Mg2+. Energy Source, Part A: Recovery, Utilization, and Environmental Effects, 42(10): 1183-1192. https://doi.org/10.1080/15567036.2019.1602227.

Dróżdż, D.; MaliÅ"žska, K.; Mazurkiewicz, J.; Kacprzak, M.; Mrowiec, M.; Szczypiór, A.; Postawa, P.; Stachowiak, T. 2020. Fish pond sediment from aquaculture production - Current practices and the potential for nutrient recovery: a Review. International Agrophysics, 34: 33-41. https://doi.org/10.31545/intagr/116394.

Elmoor-Loureiro, L.M.A. 1997. Manual de identificação de cladóceros lí­­mnicos do Brasil. Taguatinga, DF: Editora Universa. 156p.

Golterman, H.L.; Clymo, R.S.; Ohmstad, M.A.M. 1978. Methods for physical and chemical analysis of freshwaters. Oxford: Blackwell Scientific Publications. 213p.

Ismail, A.H.; Adnan, A.A.M. 2016. Zooplankton composition and abundance as indicators of eutrophication in two small man-made lakes. Tropical Life Sciences Research, 27(Suppl. 1): 31-38. http://dx.doi.org/10.21315/tlsr2016.27.3.5.

Koroleff, F. 1976. Determination of nutrients. In: Grashof, E; Kremling, E. (eds.). Methods of seawater analysis. New York: Verlag Chemie Wenhein, p. 117-181.

Koste, W. 1978. Rotatoria. Die Radertiere Mitteleuropas (Uberorderung Monogonata). Ein Bestimmungswert, begrundet von Max Voigt. Berlin: Gebruder Borntraeger, 673p.

Lobo, E.; Leighton, G. 1986. Estructuras comunitarias de las fitocenosis planctonicas de los sistemas de desembocaduras de rí­­os y esteros de la zona central de Chile. Revista de Biologí­­a Marina y Oceanografí­­a, 22(1): 1-29.

Mackereth, F.J.; Heron, H.J.; Talling, F.J. 1978. Water analysis: some revised methods for limnologists. Freshwater Publication Association Scientific Publication, 35: 22-117.

Mantovano, T.; Brahin, L.S.M.; Schwind, L.T.F.; Tiburcio, V.G.; Bonecker, C.C.; Lansac-Tôha, F.A. 2019. Zooplankton communities show contrasting productivity variables thresholds in dammed and undammed systems. Limnetica, 38(2): 669-682. https://doi.org/10.23818/limn.38.39.

Montojo, B.; Baldoza, J.S.; Perelonia, K.B.S.; Cambia, F.D.; Garcia, L.C. 2020. Estimation of nutrient load from aquaculture farms in Manila Bay, Philippines. The Philippine Journal of Fisheries, 27(1): 30-39. https://doi.org/10.31398/tpjf/27.1.2019A0016.

Morales-Baquero, R.; Pérez-Martí­­nez, C.; Ramos-Rodrigues, E.; Sánchez-Castillo, P.; Villar-Argaiz, M.; Conde-Porcuna, J.M. 2019. Zooplankton advective losses may affect chlorophyll-a concentrations in fishless high-mountain lakes. Limnetica, 38(10): 55-62. https://doi.org/10.23818/limn.38.12.

Nusch, E.A. 1980. Comparison of different methods for chlorophyll and phaeopigments determination. Archiv für Hydrobiologie, 14: 14-36.

Omitoyin, B.O.; Ajani, E.K.; Okeleye, O.I.; Akpollih, B.U.; Ogunjobi, A.A. 2017. Biological treatment of fish farm effluent and its reuse in the culture of Nile Tilapia (Oreochromis niloticus). Journal of Aquaculture Research & Development, 8(2): 1-9. https://doi.org/10.4172/2155-9546.1000469.

Omotade, I.F.; Alatise, M.O.; Olanrewaju, O.O. 2019. Recycling of aquaculture wastewater using charcoal based constructed wetlands. International Journal of Phytoremediation, 21(5): 399-404. https://doi.org/10.1080/15226514.2018.1537247.

Pearson, A.A.C.; Duggan, I.C. 2018. A global review of zooplankton species in freshwater aquaculture ponds: what are the risks for invasion? Aquatic Invasions, 13(3): 311-322. https://doi.org/10.3391/ai.2018.13.3.01.

Pielou, E.C. 1975. Ecological diversity. New York: John Wiley. 165p.

Raij, B.V.; Andrade, J.C.; Cantarelle, H.; Quaggio, J.A. 2001. Análise quí­­mica para avaliação da fertilidade de solos tropicais. Campinas, SP: IAC. 285p.

Reid, J.W. 1985. Calanoid copepods (Diaptomidae) from coastal lakes, state of Rio de Janeiro, Brazil. Proceedings of the Biological Society of Washington, 98(1): 574-590.

Schwind, L.T.F.; Arriera, R.L.; Simões, N.R.; Bonecker, C.C.; Lansac-Tôha, F.A. 2017. Productivity gradient affects the temporal dynamics of testate amoebae in a neotropical floodplain. Ecological Indicators, 78: 264-269. https://doi.org/10.1016/j.ecolind.2017.03.036.

Sipaúba-Tavares, L.H.; Millan, R.N.; Amaral, A.A. 2010. Influence of management on plankton community of fishpond during dry and rainy seasons. Acta Limnologica Brasiliensia, 22(1): 70-79. https://doi.org/10.4322/actalb.02201009.

Sipaúba-Tavares, L.H.; Millan, R.N.; Amaral, A.A. 2013. Influence of management on the water quality and sediment in tropical fish farm. Journal of Water Resource and Protection, 5(5): 495-501. https://doi.org/10.4236/jwarp.2013.55049.

Sipaúba-Tavares, L.H.; Millan, R.N.; Capitano, E.C.O.; Scardoelli-Truzzi, B. 2019. Abiotic parameters and planktonic community of an earthen fishpond with continuous water flow. Acta Limnologica Brasiliensia, 31: e13. https://doi.org/10.1590/S2179-975X3018.

Stat Soft Inc. 2007. Statistica: Data analysis software system, version 8.0.

Downloads

Published

2021-06-22

Issue

Section

Scientific Article