Effects of thymol:carvacrol association on health and zootechnical performance of tambaqui Colossoma macropomum

Authors

DOI:

https://doi.org/10.20950/1678-2305/bip.2022.48.e725

Abstract

Research in aquaculture shows that thymol and carvacrol are promising additives in fish diets. In this study, the effects of the thymol:carvacrol combination on health parameters and the zootechnical performance of tambaqui (Colossoma macropomum) were evaluated. The compounds were incorporated into five concentrations of feed. At intervals of 30 and 60 days, fish were sampled to evaluate haematological, biochemical, and immunological parameters, and after 60 days, zootechnical performance, parasitic load, and resistance to bacteriosis were evaluated. After 30 days, fish that received the highest concentrations of thymol:carvacrol showed a reduction in the number of thrombocytes and lymphocytes and an increase in eosinophils (p ≤ 0.05). After 60 days of feeding, haematological parameters were similar between all groups. Regarding the antiparasitic effect of the compounds, all groups had a high parasitic load (monogenean infestation). Regarding the prevention of bacteriosis, high mortality was detected in all groups after the experimental challenge with Aeromonas jandaei, with no greater protection for fish fed with thymol:carvacrol. In conclusion, it was observed that haematological results corroborate with research on mammals, in which the anti-inflammatory/immunosuppressive effects of thymol and carvacrol are highlighted. However, the use of additives for aquaculture should be discussed carefully, as the cost-benefit of supplementation is not a consensus.

References

Aanyu, M.; Betancor, M.B.; Monroig, O. 2018. Effects of dietary limonene and thymol on the growth and nutritional physiology of Nile tilapia (Oreochromis niloticus). Aquaculture, 488: 217-226. https://doi.org/10.1016/j.aquaculture.2018.01.036

Abd El-Hack, M.E., Alagawany, M.; Farag, M.R.; Tiwari, R.; Karthik, K.; Dhama, K.; Zorriehzahra, J.; Adel, M. 2016. Beneficial impacts of thymol essential oil on health and production of animals, fish and poultry: a review. Journal of Essential Oil Research, 28(5): 365-382. https://doi.org/10.1080/10412905.2016.1153002

Alagawany, M.; Abd El-Hack, M.E.; Farag, M.R.; Ruchi, T.; Dhama, K. 2015. Biological effects and modes of action of carvacrol in animal and poultry production and health – a review. Advances in Animal and Veterinary Sciences, 3(2s): 73-84. https://doi.org/10.14737/journal.aavs/2015/3.2s.73.84

Alagawany, M.; Farag, M.R.; Abdelnour, S.A.; Elnesr, S.S. 2021. A review on the beneficial effect of thymol on health and production of fish. Reviews in Aquaculture, 13(1): 632-641. https://doi.org/10.1111/raq.12490

Amer, S.A.; Metwally, A.E.; Ahmed, S.A.A. 2018. The influence of dietary supplementation of cinnamaldehyde and thymol on the growth performance, immunity and antioxidant status of monosex Nile tilapia fingerlings (Oreochromis niloticus). The Egyptian Journal of Aquatic Research, 44(3): 251-256. https://doi.org/10.1016/j.ejar.2018.07.004

Amirghofran, Z.; Ahmadi, H.; Karimi, M.H.; Kalantar, F.; Gholijani, N.; Malek-Hosseini, Z. 2016. In vitro inhibitory effects of thymol and carvacrol on dendritic cell activation and function. Pharmaceutical Biology, 54(7): 1125-1132. https://doi.org/10.3109/13880209.2015.1055579

Assis, G.B.; Pereira, F.L.; Zegarra, A.U.; Tavares, G.C.; Leal, C.A.; Figueiredo, H.C. 2017. Use of MALDI-TOF mass spectrometry for the fast identification of gram-positive fish pathogens. Frontiers in Microbiology, 8: 1492. https://doi.org/10.3389/fmicb.2017.01492

Balcázar, J.L.; Blas, I.; Ruiz-Zazuela, I.; Cunningham, D.; Vandrell, D.; Muzquiz, J.L. 2006. The role of probiotics in aquaculture. Veterinary Microbiology, 114(3-4): 173-186. https://doi.org/10.1016/j.vetmic.2006.01.009

Baldissera, M.D.; Souza, C.F.; Júnior, G.B.; Vargas, A.C.; Boligon, A.A.; Campos, M.M.A.; Stefani, L.M.; Baldisserotto, B. 2017. Melaleuca alternifolia essential oil enhances the non-specific immune system and prevents oxidative damage in Rhamdia quelen experimentally infected by Aeromonas hydrophila: Effects on cholinergic and purinergic systems in liver tissue. Fish & Shellfish Immunology, 61: 1-8. https://doi.org/10.1016/j.fsi.2016.12.016

Bianchini, A.E.; Garlet, Q.; Cunha, J.A.; Bandeira-Junior, G.; Brusque, I.C.M.; Salbego, J.; Heinzmann, B.M.; Baldisserotto, B. 2017. Monoterpenoids (Thymol, carvacrol and S-(+)-linalool) with anesthetic activity in silver catfish (Rhamdia quelen): Evaluation of acetylcholinesterase and GABaergic activity. Brazilian Journal of Medical and Biological Research, 50(12): e6346. https://doi.org/10.1590/1414-431x20176346

Biller-Takahashi, J.D.; Takahashi, L.S.; Saita, M.V.; Gimbo, R.Y.; Urbinati, E.C. 2013. Leukocytes respiratory burst activity as indicator of innate immunity of pacu Piaractus mesopotamicus. Brazilian Journal of Biology, 73(2): 425-429. https://doi.org/10.1590/S1519-69842013000200026

Brasil. Ministério da Agricultura, Pecuária e Abastecimento. 2015. Secretaria de Defesa Agropecuária. Instrução Normativa nº 44, de 15 de dezembro de 2015. Diário Oficial da União, Seção 1, p. 7. Available at: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-pecuarios/produtos-veterinarios/legislacao-1/instrucoes-normativas/instrucao-normativa-sda-mapa-ndeg-44-de-15-12-2015.pdf/view. Accessed on: Apr. 1, 2021.

Brazilian Compendium of Animal Feeding. 2017. Guia de Métodos Analíticos. 5ª ed. Campinas

Brazilian Institute of Geography and Statistics Foundation (IBGE). 2021. Available at: https://cidades.ibge.gov.br/brasil/pesquisa/18/16459. Accessed on: May 3, 2021.

Burr, G.; Gatlin, D.; Ricke, S. 2005. Microbial ecology of the gastrointestinal tract of fish and the potential application of prebiotics and probiotics in finfish aquaculture. Journal of the World Aquaculture Society, 36(4): 425-436. https://doi.org/10.1111/j.1749-7345.2005.tb00390.x

Chamanara, M.; Abdollahi, A.; Rezayat, S.M.; Ghazi-Khansari, M.; Dehpour, A.; Nassireslami, E.; Rashidian, A. 2019. Thymol reduces acetic acid-induced inflammatory response through inhibition of NF-kB signaling pathway in rat colon tissue. Inflammopharmacology, 27(6): 1275-1283. https://doi.org/10.1007/s10787-019-00583-8

Chauffaille, M.L.L.F. 2010. Eosinofilia reacional, leucemia eosinofílica crônica e síndrome hipereosinofílica idiopática. Revista Brasileira de Hematologia e Hemoterapia, 32(5): 395-401. https://doi.org/10.1590/s1516-84842010000500013

Costa, J.C.; Valladão, G.M.R.; Pala, G.; Gallani, S.U.; Kotzent, S.; Crotti, A.E.M.; Fracarolli, L.; Silva, J.J.M.; Pilarski, F. 2017. Copaifera dukei oleoresin as a novel alternative for treatment of monogenean infections in pacu Piaractus mesopotamicus. Aquaculture, 471: 72-79. https://doi.org/10.1016/j.aquaculture.2016.11.041

Cunha, J.A.; Bandeira-Junior, G.; Silva, E.G.; Scheeren, C.A.; Fausto, V.P.; Salbego, J.; Vaucher, R.A.; Vargas, A.C.; Baldisserotto, B. 2019. The survival and hepatic and muscle glucose and lactate levels of Rhamdia quelen inoculated with Aeromonas hydrophila and treated with terpinen-4-ol, carvacrol or thymol. Microbial Pathogenesis, 127: 220-224. https://doi.org/10.1016/j.micpath.2018.12.005

Cunha, J.A.; Scheeren, C.A.; Fausto, V.P.; Melo, L.D.W.; Henneman, B.; Frizzo, C.P.; Vaucher, R.A.; Vargas, A.C.; Baldisserotto, B. 2018. The antibacterial and physiological effects of pure and nanoencapsulated Origanum majorana essential oil on fish infected with Aeromonas hydrophila. Microbial Pathogenesis, 124: 116-121. https://doi.org/10.1016/j.micpath.2018.08.040

Dawood, M.A.O.; Koshio, S.; Esteban, M.A. 2018. Beneficial roles of feed aditives and imunostimulants in aquaculture: a review. Reviews in Aquaculture, 10(4): 950-974. https://doi.org/10.1111/raq.12209

Dhama, K.; Latheef, S.K.; Saminathan, M.; Abdul Samad, H.; Karthik, K.; Tiwari, R.; Khan, R.U.; Alagawany, M.; Farag, M.R.; Alam, G.M.; Laudadio, V.; Tufarelli, V. 2015. Multiple beneficial applications and modes of action of herbs in poultry health and production- A review. International Journal of Pharmaceutics, 11(3): 152-176. https://doi.org/10.3923/ijp.2015.152.176

Fracalossi, D.M., Rodrigues, A.P.O., Silva, T.S.C.; Cyrino, J.E.P. 2013. Técnicas experimentais em nutrição de peixes. In: Fracalossi, D.M.; Cyrino, J.E. Nutriaqua: nutrição e alimentação de espécies para aquicultura brasileira. Sociedade Brasileira de Aquicultura e Biologia Aquática, p. 50-52.

Hai, N.V. 2015. The use of probiotics in aquaculture. Journal of Applied Microbiology, 119(4): 917-935. https://doi.org/10.1111/jam.12886

Hashimoto, G.S.O.; Chagas, E.C.; Chaves, F.C.M.; Martins, M.L. 2016. Lippia sidoides e Mentha piperita no controle de parasitos Monogenea em Oreochromis niloticus parasitas de brânquias de peixes. Manaus: Embrapa Amazônia Ocidental, 28 p. Available at: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1056112. Accessed on: Apr. 7, 2021.

Heckler, C.; Sant’anna, V.; Brandelli, A.; Malheiros, P.S. 2021. Combined effect of carvacrol, thymol and nisin against Staphylococcus aureus and Salmonella Enteritidis. Anais da Academia Brasileira de Ciências, 93(Suppl. 4): e20210550. https://doi.org/10.1590/0001-3765202120210550

Hesser, E.F. 1960. Methods for routine fish hematology. The Progressive Fish-Culturist, 22(4): 164-171. https://doi.org/10.1577/1548-8659(1960)22[164:mfrfh]2.0.co;2

Huttenhuis, H.T.B.; Ribeiro, A.S.P.; Bowden, T.J.; Van Bavel, C.; Taverne-Thiele, A.J.; Rombout, J.H.W.M. 2006. The effect of oral immuno-stimulatin in juvenile of carp (Cyprinus carpio L.). Fish & Shellfish Immunology, 21(3): 261-271. https://doi.org/10.1016/j.fsi.2005.12.002

Kachur, K.; Suntres, Z. 2020. The antibacterial properties of phenolic isomers, carvacrol and thymol. Critical Review in Food Science and Nutrition Journal, 60(18): 3042-3053. https://doi.org/10.1080/10408398.2019.1675585

Kong, Y.D.; Li, M.; Xia, C.G.; Zhao, J.; Niu, X.T.; Shan, X.F.; Wang, G.Q. 2021. The optimum thymol requirement in diets of Channa argus: effects on growth, antioxidant capability, immune response and disease resistance. Aquaculture Nutrition, 27(3): 712-722. https://doi.org/10.1111/anu.13217

Li, P.; Gatlin, D.M. 2004. Dietary brewer's yeast and the prebiotic GroBiotick AE influence growth performance, immune responses and resistance of hybrid striped bass (Moronen chrysops x M. saxatilis) to Streptococcus iniae infection. Aquaculture, 231(1-4): 445-456. https://doi.org/10.1016/j.aquaculture.2003.08.021

Mahboub, H.H.; Tartor, Y.H. 2020. Carvacrol essential oil stimulates growth performance, immune response, and tolerance of Nile tilapia to Cryptococcus uniguttulatus infection. Diseases of Aquatic Organisms, 141: 1-14. https://doi.org/10.3354/dao03506

Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Nabavi, S.M.; Gortzi, O.; Izadi, M.; Nabavi, S.M. 2016. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chemistry, 210: 402-414. https://doi.org/10.1016/j.foodchem.2016.04.111

Mielke, T.D.; Francisco, C.J.; Dorella, F.A.; Figueiredo, H.C.P.; Tavares, G.C.; Gallani, S.U. 2022. The strategic use of water additives for tambaqui Colossoma macropomum transport: new insights of bacteriosis and productivity approach. Aquaculture, 558, 738406. https://doi.org/10.1016/j.aquaculture.2022.738406

Morselli, M.B.; Baldissera, M.D.; Souza, C.F.; Reis, J.H.; Baldisserotto, B.; Sousa, A.A.; Silva, A.S. 2020. Effects of thymol supplementation on performance, mortality and branchial energetic metabolism in grass carp experimentally infected by Aeromonas hydrophila. Microbial Pathogenesis, 139: 103915. https://doi.org/10.1016/j.micpath.2019.103915

Pala, G.; Valladão, G.M.R.; Alves, L.O.; Pilarski, F.; Hoppe, E.L. 2018. Tadpoles of Rhinella schneideri as reservoirs of trichodinids in continental aquaculture. Aquaculture, 488: 17-21. https://doi.org/10.1016/j.aquaculture.2018.01.017

Pivetta, H.M.F.; Braz, M.M.; Pozzebon, N.M.; Freire, A.B.; Real, A.A.; Cocco, V.M.; Sperandio, F.F. 2018. Prevalência de aleitamento materno e fatores associados: uma revisão de literatura. Revista de Ciências Médicas e Biológicas, 17(1): 95-101. https://doi.org/10.9771/cmbio.v17i1.12783

Pu, H.; Li, X.; Du, Q.; Cui, H.; Xu, Y. 2017. Research progress in the application of Chinese herbal medicines in aquaculture: a review. Engineering, 3(5): 731-737. https://doi.org/10.1016/J.ENG.2017.03.017

Rathod, N.B.; Kulawik, P.; Ozogul, F.; Regenstein, J.M.; Ozogul, Y. 2021. Biological activity of plant-based carvacrol and thymol and their impact on human health and food quality. Trends in Food Science & Technology, 116: 733-748. https://doi.org/10.1016/j.tifs.2021.08.023

Ringø, E.; Olsen, R.E.; Gifstad, T.O.; Dalmo, R.A.; Almud, H.; Hemre, G.I.; Bakke, A.M. 2010. Prebiotics in aquaculture. Aquaculture Nutrition, 16(2): 117-136. https://doi.org/10.1111/j.1365-2095.2009.00731.x

Rodríguez-Estrada, U.; Ranzani-Paiva, M.J.T. 2019. Aditivos funcionais nas rações para aquicultura. In: Ranzani-Paiva, M.J.T.; Takemoto, R.M.; Lizama, M.L.P.; Perazzolo, L.M.; Rosa, R.D. Biotecnologia e sanidade de organismos aquáticos. São Paulo: ABRAPOA, p. 81-110.

Sheorain, J.; Mehra, M.; Thakur, R.; Grewal, S.; Kumari, S. 2019. In vitro anti-inflammatory and antioxidant potential of thymol loaded bipolymeric (tragacanth gum/chitosan) nanocarrier. International Journal of Biological Macromolecules, 125: 1069-1074. https://doi.org/10.1016/j.ijbiomac.2018.12.095

Silva, F.V. 2018. Investigação do potencial farmacológico dos monoterpenos carvacrol e linalol livres ou complexados e o desenvolvimento de formulação tópica para aplicações farmacêuticas, Teresina, Brasil. 105f. (Doctoral dissertation). Universidade Federal do Piauí. Available at: http://repositorio.ufpi.br:8080/xmlui/handle/123456789/957. Accessed on: Aug. 10, 2021.

Silva, J.M.; Paz, A.L.; Val, A.L. 2021. Effect of carvacrol on the haemato-immunological parameters, growth and resistance of Colossoma macropomum (Characiformes: Serrasalmidae) infected by Aeromonas hydrophila. Aquaculture Research, 52(7): 3291-3300. https://doi.org/10.1111/are.15174

Tachibana, L.; Dias, D.C.; Ishikawa, C.M.; Gonçalves, G.S.; Natori, M.M.; Hamed, S.B.; Ranzani-Paiva, M.J.T. 2019. Recentes avanços dos estudos e utilizações de probióticos na piscicultura. In: Ranzani-Paiva, M.J.T.; Takemoto, R.M.; Lizama, M.D.L.A.P.; Perazzolo, L.M.; Rosa, R.D. (eds.). Biotecnologia e sanidade de organismos aquáticos. São Paulo: ABRAPOA, pp. 41-80.

Valladão, G.M.R.; Gallani, S.U.; Pilarski, F. 2018. South American fish for continental aquaculture. Reviews in Aquaculture, 10(2): 351-369. https://doi.org/10.1111/raq.12164

Xu, J.; Zhou, F.; Ji, B.P.; Pei, R.S.; Xu, N. 2008. The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Letters in Applied Microbiology, 47(3): 174-179. https://doi.org/10.1111/j.1472-765X.2008.02407.x

Yousefi, M.; Hoseini, S.M.; Vatnikov, Y.A.; Nikishov, A.A.; Kulikov, E.V. 2018. Thymol as a new anaesthetic in common carp (Cyprinus carpio): efficacy and physiological effects in comparison with eugenol. Aquaculture, 495: 376-383. https://doi.org/10.1016/j.aquaculture.2018.06.022

Youssefi, M.R.; Tabari, M.A.; Esfandiari, A.; Kazemi, S.; Moghadamnia, A.A.; Sut, S.; Dall’Acqua, S.; Benelli, G.; Maggi, F. 2019. Efficacy of two monoterpenoids, carvacrol and thymol, and their combinations against eggs and larvae of the West Nile vector Culex pipiens. Molecules, 24(10): 1867. https://doi.org/10.3390/molecules24101867

Zadmajid, V.; Mohammadi, C. 2017. Dietary thyme essential oil (Thymus vulgaris) changes serum stress markers, enzyme activity, and hematological parameters in gibel carp (Carassius auratus gibelio) exposed to silver nanoparticles. Iranian Journal of Fisheries Sciences, 16(3): 1063-1084.

Downloads

Published

2022-11-11

Issue

Section

Scientific Article

Most read articles by the same author(s)