Crude glycerin in feed for Colossoma macropomum fish: evaluation of histopathological effects on the liver and kidney

Authors

  • Eduardo Libanio Reis Santos Universidade de Gurupi – Faculty of Medicine – Paraíso do Tocantins (TO), Brazil. https://orcid.org/0000-0002-3705-418X
  • Sandro Estevan Moron Universidade Federal do Norte do Tocantins – School of Veterinary Medicine and Animal Science – Laboratory of Morphophysiology of Neotropical Fish – Araguaína (TO), Brazil. https://orcid.org/0000-0002-1359-6160

Keywords:

Glycerol, Aquaculture, Tambaqui, Fish feed, Histopathology

Abstract

The present study aimed to verify whether the use of crude glycerin in the diet of juvenile C. macropomum could promote histopathological changes in the liver and kidneys. 150 juveniles were used, divided into 15 tanks of 1000 liters (five treatments and three repetitions, n = 10). Five different diets with inclusion of crude glycerin (0%; 7.5%; 10%; 12.5%; 15%) were used in exchange for soybean oil and partial replacement of corn bran. The animals were fed to satiation for 60 days. After this period, liver and kidney samples from each group were submitted to histological processing and histopathological analysis. The semi-quantitative method was used to assess the lesions: calculation of Mean Alteration Values (MVA), which assess the occurrence of the lesion, and the Histopathological Alterations Index (HAI), which allows assessing the severity of the lesions. The results indicated significant non-harmful effects, but adaptive responses to the diet. In conclusion, the inclusion of up to 15% crude glycerin can be used without causing significant liver and kidney changes in C. macropomum juveniles.

References

Ansaldo, M.; Nahabedian, D.E.; Holmes-Brown, E.; Agote, M.; Ansay, C.V.; Guerrero, N.R.; Wider, E.A. 2006. Potential use of glycogen level as biomarker of chemical stress in Biomphalaria glabrata. Toxicology, 224(1-2): 119-127. https://doi.org/10.1016/j.tox.2006.04.037

Avellaneda, Y.; Ariza-Nieto, C.; Afanador-Téllez, G. 2020. Crude glycerin and energy density of diets for growing, pre-lay and pre-peak Backcob Brown egg-laying hens. Brazilian Journal of Poultry Science, 22(2): 1-14. https://doi.org/10.1590/1806-9061-2019-1179

Balen, R.E.; Tetu, P.N.; Bombardelli, R.A.; Pozza, P.C.; Meurer, F. 2014. Digestible energy of crude glycerol for pacu and silver catfish. Ciência Rural, 44: 1448-1451. https://doi.org/10.1590/0103-8478cr20131426

Bombardelli, R.A.; Mewes, J.K.; Buzzi, A.H.; Pedreira, A.C.O.; Syperreck, M.A.; Dalmaso, A.C.S.; Chagas, T.V.; Chiella, R.J.; Meurer, F. 2021a. Diets containing crude glycerin modify the ovary histology, cause reproductive harm on Nile tilapia females and impair the offspring quality. Aquaculture, 533:736098. https://doi.org/10.1016/j.aquaculture.2020.736098

Bombardelli, R.A.; Oliveira, E.J.; Syperreck, M.A.; Pedreira, A.C.O.; Freitas, J.M.A.; Marques, A.E.M.L.; Meurer, F. 2021b. Silver catfish (Rhamdia quelen) breeders fed on crude glycerin-containing diets exhibited metabolic alterations and increased sperm concentration. Aquaculture, 530:735724. https://doi.org/10.1016/j.aquaculture.2020.735724

Campos, V.E.W.; Pereira, B.F.; Pitol, D.L.; Alves, R.M.S.; Caetano, F.H. 2017. Analysis of the Liver of FishSpecies Prochilodus lineatus Altered Environments, Analyzed with ImageJ. Microscopy Research, 5(1): 1-9. https://doi.org/10.4236/mr.2017.51001

Costa, G.D.M.; Ortis, R.C.; Lima, M.G.D.; Casals, J.B.; Lima, A.R.D.; Kfoury Junior, J.R. 2012. Morphological structure of the liver in tambaqui, Colossoma macropomum (Cuvier,1818). Pesquisa Veterinária Brasileira, 32(9): 947-950. https://doi.org/10.1590/S0100-736X2012000900022

Costa, C.A.; Andrade, G.P.; Maciel, M.V.; Lima, D.M.; Cardoso, D.B.; Lopes, L.A.; Carvalho, F.F.R. 2020. Meat quality of lambs fed crude glycerin as a replacement for corn. Small Ruminant Research, 192: 106245. https://doi.org/10.1016/j.smallrumres.2020.106245

Elia, A.C.; Capucchio, M.T.; Caldaroni, B.; Magara, G.; Dörr, A.J.M.; Biasato, I.; Gasco, L. 2018. Influence of Hermetia illucens meal dietary inclusion on the histological traits, gut mucin composition and the oxidative stress biomarkers in rainbow trout (Oncorhynchus mykiss). Aquaculture, 496: 50-57. https://doi.org/10.1016/j.aquaculture.2018.07.009

Junqueira, L.C.U.; Junqueira, L.M.M.S. 1983. Técnicas básicas de citologia e histologia. Santos: São Paulo.

Lammers, P.J.; Kerr, B.J.; Weber, T.E.; Dozier III, W.A.; Kidd, M.T.; Bregendahl, K.; Honeyman, M.S. 2008. Digestible and metabolizable energy of crude glycerol for growing pigs. Journal of Animal Science, 86(3): 602-608. https://doi.org/10.2527/jas.2007-0453

Leão, J.P.; Ramos, A.T.; Maruo, V.M.; Souza, D.P.M.D.; Neiva, J.N.M.; Restle, J.; Moron, S.E. 2012. Anatomopatologia de amostras de bovinos alimentados com glicerol. Ciência Rural, 42(7): 1253-1256. https://doi.org/10.1590/S0103-84782012005000046

Lima, C.A.S.; Bussons, M.R.F.M.; Oliveira, A.T.; Aride, P.H.R.; O’Sullivan, F.L.A.; Pantoja-Lima, J. 2020. Socioeconomic and profitability analysis of Tambaqui Colossoma macropomum fish farming in the state of Amazonas,Brazil. Aquaculture Economics Management, 24(4): 406-421. https://doi.org/10.1080/13657305.2020.1765895

Martínez-Miró, S.; Madrid, J.; López, M.J.; Orengo, J.; Sánchez, C.J.; Hernández, F. 2021. Feeding Crude Glycerin to Finishing Iberian Crossbred Pigs: Effects on Growth Performance, Nutrient Digestibility, and Blood Parameters. Animals, 11(8): 2181. https://doi.org/10.3390/ani11082181

Matos, P.R.; Ramos, A.T.; Moron, S.E. 2016. Crude glycerin in diets of juvenile tambaqui. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 68(6): 1705-1712. https://doi.org/10.1590/1678-4162-8473

Mauerwerk, M.T.; Zadinelo, I.V.; Meurer, F. 2021. Use of glycerol in fish nutrition: a review. Reviews in Aquaculture,13(2): 853-861. https://doi.org/10.1111/raq.12502

Moesch, A.; Meurer, F.; Zadinelo, I.V.; Carneiro, W.F.; Silva, L.C.R.; Santos, L.D. 2016. Growth, body composition and hepatopancreas morphology of Nile tilapia fingerlings fed crude glycerol as a replacement for maize in diets. Animal Feed Science and Technology, 219: 122-131. https://doi. org/10.1016/j.anifeedsci.2016.05.009

McManus, J.F.A. 1948. Histological and histochemical uses of periodic acid. Stain Technology, 23(3): 99-108. https://doi. org/10.3109/10520294809106232

Nomanbhay, S.; Ong, M.Y.; Chew, K.W.; Show, P.L.; Lam, M.K.; Chen, W.H. 2020. Organic carbonate production utilizing crude glycerol derived as by-product of biodiesel production: A review. Energies, 13(6): 1483. https://doi.org/10.3390/en13061483

Oliveira-Lima, J.D.; Santos, E.L.R.; Moron, S.E. 2021. Effects of trichlorfon organophosphate on the morphology of the gills and liver of Pseudoplatystoma corruscans. Journal of Environmental Science and Health, Part B, 56(12): 1057-1065 https://doi.org/10.1080/03601234.2021.2011555

Poleksic, V.; Mitrovic-Tutundžic, V. 1994. Fish gills as a monitor of sublethal and chronic effects of pollution. In: Müller, R.; Lloyd, R. (eds.). Sublethal and chronic effects of pollutants on freshwater fish. Oxford: FishingNews Books. pp. 339-352.

Rašković, B.; Stanković, M.; Marković, Z.; Poleksić, V. 2011. Histological methods in theassessment of different feed effects on liver and intestine of fish. Journal of Agricultural Sciences, 56(1): 87-100. https://doi.org/10.2298/JAS1101087R

Rôxo, V.B.S.; Moron, S.E.; Alves, D.; Ferreira, M.P.B.J. 2018. Crude glycerol in the diets of the juveniles of Amazon catfish (female Pseudoplatystoma punctifer x male Leiarius marmoratus). International Journal of Environment Agriculture and Biotechnology, 3(5): 1640-1655. https://doi.org/10.22161/ijeab/3.5.10

Santos, L.D.D.; Zadinelo, I.V.; Moesch, A.; Bombardelli, R.A.; Meurer, F. 2019. Crude glycerol in diets for Nile tilapia in the fattening stage. Pesquisa Agropecuária Brasileira, 54: e00460. https://doi.org/10.1590/s1678-3921.pab2019.v54.00460

Santos, E.L.R.; Rezende, F.P.; Moron, S.E. 2020. Stress-related physiological and histological responses of tambaqui (Colossoma macropomum) to transportation in water with tea tree and clove essential oil anesthetics. Aquaculture, 523: 735164. https://doi.org/10.1016/j.aquaculture.2020.735164

Santos, R.B.; Izel-Silva, J.; Fugimura, M.M.S.; Suita, S.M.; Ono, E.A.; Affonso, E.G. 2021. Growth performance and health of juvenile tambaqui, Colossoma macropomum, in a biofloc system at different stocking densities. Aquaculture Research, 52(8): 3549-3559. https://doi.org/10.1111/are.15196

Silva, V.O.; Lopes, E.; Andrade, E.F.; Sousa, R.V.; Zangeronimo, M.G.; Pereira, L.J. 2014. Use of biodiesel co-products (Glycerol) as alternative sources of energy in animal nutrition: a systematic review. Archivos de Medicina Veterinaria, 46(1): 111-120. https://doi.org/10.4067/S0301-732X2014000100015

Schwaiger, J.; Wanke, R.; Adam, S.; Pawert, M.; Honnen, W.; Triebskorn, R. 1997. The use of histopathological indicators to evaluate contaminant related stress in fish. Journal of Aquatic Ecosystem Stress and Recovery, 6(1): 75-86. https://doi.org/10.1023/A:1008212000208

Takashima F.; Hibiya T. 1995. An atlas of fish histology: normal and pathological features. Tokyo: Kodansha.

Theisen, M.T.; Bombardelli, R.A.; Meurer, F.; Ferreira, R.L.; Silva, L.C.R. 2020. Crude glycerol inclusion in diets for post- larvae Rhamdia voulezi and Rhamdia branneri. Aquaculture Research, 51(3): 1313-1316. https://doi.org/10.1111/are.14465

Valenti, W.C.; Barros, H.P.; Moraes-Valenti, P.; Bueno, G.W.; Cavalli, R.O. 2021. Aquaculture in Brazil: past, present and future. Aquaculture Reports, 19: 100611. https://doi.org/10.1016/j.aqrep.2021.100611

Downloads

Published

2023-11-09

Issue

Section

Scientific Article