Glicerina bruta em rações para peixes tambaqui: avaliação dos efeitos histopatológicos no fígado e rim

Autores

  • Eduardo Libanio Reis Santos Universidade de Gurupi – Faculty of Medicine – Paraíso do Tocantins (TO), Brasil. https://orcid.org/0000-0002-3705-418X
  • Sandro Estevan Moron Universidade Federal do Norte do Tocantins – School of Veterinary Medicine and Animal Science – Laboratory of Morphophysiology of Neotropical Fish – Araguaína (TO), Brasil. https://orcid.org/0000-0002-1359-6160

Palavras-chave:

Glicerol, Aquicultura, Tambaqui, Ração para peixes, Histopatologia

Resumo

O presente estudo objetivou verificar se a utilização de glicerina bruta na dieta de juvenis de C. macropomum poderia promover alterações histopatológicas no fígado e nos rins. Foram utilizados 150 juvenis, divididos em 15 tanques de 1000 litros (cinco tratamentos e três repetições, n = 10). Foram utilizadas cinco diferentes rações com inclusões de glicerina bruta (0%; 7,5%; 10%; 12,5%; 15%) em troca do óleo de soja e substituição parcial do farelo de milho. Os animais foram alimentados até a saciedade durante 60 dias. Após esse período, amostras de fígado e rim de cada grupo foram submetidas ao processamento histológico e análises histopatológicas. O método semiquantitativo foi usado para avaliar as lesões: cálculo dos Valores Médios de alterações (MVA), que avaliam a ocorrência da lesão e o Índice de Alterações Histopatológicas (IAH), que permite avaliar a gravidade das lesões. Os resultados indicaram efeitos não prejudiciais significativos, mas respostas adaptativas à dieta. Em conclusão a inclusão de até 15% de glicerina bruta pode ser utilizada sem causar alterações hepáticas e renais significativas em juvenis de C. macropomum.

Referências

Ansaldo, M.; Nahabedian, D.E.; Holmes-Brown, E.; Agote, M.; Ansay, C.V.; Guerrero, N.R.; Wider, E.A. 2006. Potential use of glycogen level as biomarker of chemical stress in Biomphalaria glabrata. Toxicology, 224(1-2): 119-127. https://doi.org/10.1016/j.tox.2006.04.037

Avellaneda, Y.; Ariza-Nieto, C.; Afanador-Téllez, G. 2020. Crude glycerin and energy density of diets for growing, pre-lay and pre-peak Backcob Brown egg-laying hens. Brazilian Journal of Poultry Science, 22(2): 1-14. https://doi.org/10.1590/1806-9061-2019-1179

Balen, R.E.; Tetu, P.N.; Bombardelli, R.A.; Pozza, P.C.; Meurer, F. 2014. Digestible energy of crude glycerol for pacu and silver catfish. Ciência Rural, 44: 1448-1451. https://doi.org/10.1590/0103-8478cr20131426

Bombardelli, R.A.; Mewes, J.K.; Buzzi, A.H.; Pedreira, A.C.O.; Syperreck, M.A.; Dalmaso, A.C.S.; Chagas, T.V.; Chiella, R.J.; Meurer, F. 2021a. Diets containing crude glycerin modify the ovary histology, cause reproductive harm on Nile tilapia females and impair the offspring quality. Aquaculture, 533:736098. https://doi.org/10.1016/j.aquaculture.2020.736098

Bombardelli, R.A.; Oliveira, E.J.; Syperreck, M.A.; Pedreira, A.C.O.; Freitas, J.M.A.; Marques, A.E.M.L.; Meurer, F. 2021b. Silver catfish (Rhamdia quelen) breeders fed on crude glycerin-containing diets exhibited metabolic alterations and increased sperm concentration. Aquaculture, 530:735724. https://doi.org/10.1016/j.aquaculture.2020.735724

Campos, V.E.W.; Pereira, B.F.; Pitol, D.L.; Alves, R.M.S.; Caetano, F.H. 2017. Analysis of the Liver of FishSpecies Prochilodus lineatus Altered Environments, Analyzed with ImageJ. Microscopy Research, 5(1): 1-9. https://doi.org/10.4236/mr.2017.51001

Costa, G.D.M.; Ortis, R.C.; Lima, M.G.D.; Casals, J.B.; Lima, A.R.D.; Kfoury Junior, J.R. 2012. Morphological structure of the liver in tambaqui, Colossoma macropomum (Cuvier,1818). Pesquisa Veterinária Brasileira, 32(9): 947-950. https://doi.org/10.1590/S0100-736X2012000900022

Costa, C.A.; Andrade, G.P.; Maciel, M.V.; Lima, D.M.; Cardoso, D.B.; Lopes, L.A.; Carvalho, F.F.R. 2020. Meat quality of lambs fed crude glycerin as a replacement for corn. Small Ruminant Research, 192: 106245. https://doi.org/10.1016/j.smallrumres.2020.106245

Elia, A.C.; Capucchio, M.T.; Caldaroni, B.; Magara, G.; Dörr, A.J.M.; Biasato, I.; Gasco, L. 2018. Influence of Hermetia illucens meal dietary inclusion on the histological traits, gut mucin composition and the oxidative stress biomarkers in rainbow trout (Oncorhynchus mykiss). Aquaculture, 496: 50-57. https://doi.org/10.1016/j.aquaculture.2018.07.009

Junqueira, L.C.U.; Junqueira, L.M.M.S. 1983. Técnicas básicas de citologia e histologia. Santos: São Paulo.

Lammers, P.J.; Kerr, B.J.; Weber, T.E.; Dozier III, W.A.; Kidd, M.T.; Bregendahl, K.; Honeyman, M.S. 2008. Digestible and metabolizable energy of crude glycerol for growing pigs. Journal of Animal Science, 86(3): 602-608. https://doi.org/10.2527/jas.2007-0453

Leão, J.P.; Ramos, A.T.; Maruo, V.M.; Souza, D.P.M.D.; Neiva, J.N.M.; Restle, J.; Moron, S.E. 2012. Anatomopatologia de amostras de bovinos alimentados com glicerol. Ciência Rural, 42(7): 1253-1256. https://doi.org/10.1590/S0103-84782012005000046

Lima, C.A.S.; Bussons, M.R.F.M.; Oliveira, A.T.; Aride, P.H.R.; O’Sullivan, F.L.A.; Pantoja-Lima, J. 2020. Socioeconomic and profitability analysis of Tambaqui Colossoma macropomum fish farming in the state of Amazonas,Brazil. Aquaculture Economics Management, 24(4): 406-421. https://doi.org/10.1080/13657305.2020.1765895

Martínez-Miró, S.; Madrid, J.; López, M.J.; Orengo, J.; Sánchez, C.J.; Hernández, F. 2021. Feeding Crude Glycerin to Finishing Iberian Crossbred Pigs: Effects on Growth Performance, Nutrient Digestibility, and Blood Parameters. Animals, 11(8): 2181. https://doi.org/10.3390/ani11082181

Matos, P.R.; Ramos, A.T.; Moron, S.E. 2016. Crude glycerin in diets of juvenile tambaqui. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 68(6): 1705-1712. https://doi.org/10.1590/1678-4162-8473

Mauerwerk, M.T.; Zadinelo, I.V.; Meurer, F. 2021. Use of glycerol in fish nutrition: a review. Reviews in Aquaculture,13(2): 853-861. https://doi.org/10.1111/raq.12502

Moesch, A.; Meurer, F.; Zadinelo, I.V.; Carneiro, W.F.; Silva, L.C.R.; Santos, L.D. 2016. Growth, body composition and hepatopancreas morphology of Nile tilapia fingerlings fed crude glycerol as a replacement for maize in diets. Animal Feed Science and Technology, 219: 122-131. https://doi. org/10.1016/j.anifeedsci.2016.05.009

McManus, J.F.A. 1948. Histological and histochemical uses of periodic acid. Stain Technology, 23(3): 99-108. https://doi. org/10.3109/10520294809106232

Nomanbhay, S.; Ong, M.Y.; Chew, K.W.; Show, P.L.; Lam, M.K.; Chen, W.H. 2020. Organic carbonate production utilizing crude glycerol derived as by-product of biodiesel production: A review. Energies, 13(6): 1483. https://doi.org/10.3390/en13061483

Oliveira-Lima, J.D.; Santos, E.L.R.; Moron, S.E. 2021. Effects of trichlorfon organophosphate on the morphology of the gills and liver of Pseudoplatystoma corruscans. Journal of Environmental Science and Health, Part B, 56(12): 1057-1065 https://doi.org/10.1080/03601234.2021.2011555

Poleksic, V.; Mitrovic-Tutundžic, V. 1994. Fish gills as a monitor of sublethal and chronic effects of pollution. In: Müller, R.; Lloyd, R. (eds.). Sublethal and chronic effects of pollutants on freshwater fish. Oxford: FishingNews Books. pp. 339-352.

Rašković, B.; Stanković, M.; Marković, Z.; Poleksić, V. 2011. Histological methods in theassessment of different feed effects on liver and intestine of fish. Journal of Agricultural Sciences, 56(1): 87-100. https://doi.org/10.2298/JAS1101087R

Rôxo, V.B.S.; Moron, S.E.; Alves, D.; Ferreira, M.P.B.J. 2018. Crude glycerol in the diets of the juveniles of Amazon catfish (female Pseudoplatystoma punctifer x male Leiarius marmoratus). International Journal of Environment Agriculture and Biotechnology, 3(5): 1640-1655. https://doi.org/10.22161/ijeab/3.5.10

Santos, L.D.D.; Zadinelo, I.V.; Moesch, A.; Bombardelli, R.A.; Meurer, F. 2019. Crude glycerol in diets for Nile tilapia in the fattening stage. Pesquisa Agropecuária Brasileira, 54: e00460. https://doi.org/10.1590/s1678-3921.pab2019.v54.00460

Santos, E.L.R.; Rezende, F.P.; Moron, S.E. 2020. Stress-related physiological and histological responses of tambaqui (Colossoma macropomum) to transportation in water with tea tree and clove essential oil anesthetics. Aquaculture, 523: 735164. https://doi.org/10.1016/j.aquaculture.2020.735164

Santos, R.B.; Izel-Silva, J.; Fugimura, M.M.S.; Suita, S.M.; Ono, E.A.; Affonso, E.G. 2021. Growth performance and health of juvenile tambaqui, Colossoma macropomum, in a biofloc system at different stocking densities. Aquaculture Research, 52(8): 3549-3559. https://doi.org/10.1111/are.15196

Silva, V.O.; Lopes, E.; Andrade, E.F.; Sousa, R.V.; Zangeronimo, M.G.; Pereira, L.J. 2014. Use of biodiesel co-products (Glycerol) as alternative sources of energy in animal nutrition: a systematic review. Archivos de Medicina Veterinaria, 46(1): 111-120. https://doi.org/10.4067/S0301-732X2014000100015

Schwaiger, J.; Wanke, R.; Adam, S.; Pawert, M.; Honnen, W.; Triebskorn, R. 1997. The use of histopathological indicators to evaluate contaminant related stress in fish. Journal of Aquatic Ecosystem Stress and Recovery, 6(1): 75-86. https://doi.org/10.1023/A:1008212000208

Takashima F.; Hibiya T. 1995. An atlas of fish histology: normal and pathological features. Tokyo: Kodansha.

Theisen, M.T.; Bombardelli, R.A.; Meurer, F.; Ferreira, R.L.; Silva, L.C.R. 2020. Crude glycerol inclusion in diets for post- larvae Rhamdia voulezi and Rhamdia branneri. Aquaculture Research, 51(3): 1313-1316. https://doi.org/10.1111/are.14465

Valenti, W.C.; Barros, H.P.; Moraes-Valenti, P.; Bueno, G.W.; Cavalli, R.O. 2021. Aquaculture in Brazil: past, present and future. Aquaculture Reports, 19: 100611. https://doi.org/10.1016/j.aqrep.2021.100611

Downloads

Publicado

2023-11-09

Edição

Seção

Artigo cientí­fico