Sea lettuce (Ulva ohnoi) cultivation in biofloc technology: growth performance and characterization of bioactive compounds
Keywords:
BFT, Biocompounds, Macroalgae, Protein, Shrimp effluent, UlvanAbstract
This work evaluated the biofloc technology cultivation of Ulva ohnoi on its growth performance and biocompounds contents. Ulva ohnoi was cultivated under an initial density of 6 g·L-1 for 28 days using water from a biofloc tank which was exchanged daily at a 90% rate. Temperature, salinity, and illuminance were measured daily. Algae growth and their density was adjusted weekly. Results showed an average plant growth of 1.15%·day-1 (49.5 g·week-1). A significant difference was observed when comparing the initial (2.64 ± 0.3%) and final (4.62 ± 0.2%) ulvan concentration, in addition to a protein increase of 30.2%. No statistical differences were found for concentrations of phenolics and chlorophylls. An increase in flavonoids was observed on days 7 and 14 (0.41 ± 0.04; and 0.41 ± 0.07 μg·g-1 of dry weight), as well as a decrease in carotenoids (41.3%). In conclusion, increases in protein and ulvan were observed after Ulva ohnoi was cultivated in bioflocs.
References
Al-Malki, A.L.; Barbour, E.K.; Al-Zahrani, M.H.; Moselhy, S.S. 2018. Impact of Various Solvents on Yield and Activity of Phenolics and Flavonoids of Ulva lactuca (Chlorophyta) Algae. Journal of Pharmaceutical Research International, 24(3): 1-7. https://doi.org/10.9734/JPRI/2018/44875
Alves, A.; Sousa, R.A.; Reis, R.L. 2013. A practical perspective on ulvan extracted from green algae. Journal of Applied Phycology, 25: 407-424. https://doi.org/10.1007/s10811-012-9875-4
Angell, A.R.; Mata, L.; Nys, R.; Paul, N.A. 2015 Indirect and direct effects of salinity on the quantity and quality of total amino acids in Ulva ohnoi (Chlorophyta). Journal of Phycology, 51(3): 536-545. https://doi.org/10.1111/jpy.12300
Angell, A.R.; Mata, L.; Nys, R.; Paul, N.A. 2016.The protein content of seaweeds: a universal nitrogen-to-protein conversion factor of five. Journal of Applied Phycology,28: 511-524. https://doi.org/10.1007/s10811-015-0650-1
Association of Official Analytical Chemists (AOAC). 1999. Official Methods of Analysis. Arlington: OMA.
American Public Health Association (APHA). 1995 Standard method for the examination of water and waste water. Washington: American Public Health Association.
Avnimelech, Y. 2015. Biofloc Technology: a practical hand book. Baton Rouge: World Aquaculture Society.
Avnimelech, Y.; Ritvo, G. 2003. Shrimp and fish pond soils: Processes and management. Aquaculture, 220(1-4): 549-567. https://doi.org/10.1016/S0044-8486(02)00641-5
Bikker, P.; Krimpen, M.M.V.; Wikselaar, P.V.; Tan-Houweling, B.; Scaccia, N.; Hal, J.W.V.; Huijgen, W.J.J.; Cone, J.W.; Contreras-López, A.M. 2016 Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels. Journal of Applied Phycology, 28: 3511-3525. https://doi.org/10.1007/s10811-016-0842-3
Bolton, J.J.; Robertson-Andersson, D.V.; Shuuluka, D.; Kandjengo, L. 2009. Growing Ulva (Chlorophyta) in integrated systems as a commercial crop for abalone feed in South Africa: a swot analysis. Journal of Applied Phycology, 21: 575-583. https://doi.org/10.1007/s10811-008-9385-6
Boyd, C.E.; Tucker, C.S. 2014. Handbook for aquaculture water quality. Auburn: Craftmaster Printers.
Castelar, B.; Reis, R.P.; Calheiros, A.C.S. 2014. Ulva lactuca and U. flexuosa (Chlorophyta, Ulvophyceae) cultivation in Brazilian tropical waters: recruitment, growth, and ulvan yield. Journal of Applied Phycology, 26: 1989-1999. https://doi.org/10.1007/s10811-014-0329-z
Chakraborty, S.; Santa, S.C. 2008. Biochemical composition of eight algae collected from Suberdan. Indian Journal of Marine Science, 37(3): 329-332.
Chakraborty, S.; Santra, S.C.; Bhattacharya, T. 2010 Seasonal variation of enzyme activity and stress metabolites in eight benthic macro algae with fluctuations in salinity of Sunderban estuary, India. Indian Journal of Marine Sciences, 39(3): 429-433.
Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. 2002 Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food Drug Analysis 10(3): 178-182. https://doi.org/10.38212/2224-6614.2748
Chopin, T.; Buschmann, C.H.; Troell, M.; Kautsky, N.; Neori, A.; Kraemer, G.P.; González-Zertuche, J.A.; Yarish, C.; Neefus, C. 2001. Integrating seaweeds into marine aquaculture systems: a key toward sustainability. Journal of Phycology, 37(6): 975-986. https://doi.org/10.1046/j.1529-8817.2001.01137.x
Cohen, I.; Neori, A. 1991. Ulva lactuca Biofilters for Marine Fishpond Effluent. I. Ammonium Uptake Kinetics and Nitrogen Content. Botanic Marine, 34: 475-482. https://doi.org/10.1515/botm.1991.34.6.475
Collén, P.N.; Sassi, J.-F.; Rogniaux, H.; Marfaing, H.; Helbert, W. 2011. Ulvan Lyases Isolated from the Flavobacterium Persicivirga ulvanivorans Are the first Members of a New Polysaccharide Lyase Family. Journal of Biological Chemistry, 286(49): 42063-42071. https://doi.org/10.1074/jbc.M111.271825
Costa, L.; Fidelis, G.P.; Cordeiro, S.L.; Oliveira, R.M.; Sabry, D.A.; Câmara, R.B.G.; Nobre, L.T.D.B.; Costa,M.S.S.P.; Almeida-Lima, J.; Farias, E.H.C.; Leite, E.L.; Rocha, H.A.O. 2010. Biological activities of sulfated polysaccharides from tropical seaweeds. Biomedicine & Pharmacotherapy, 64: 21-28. https://doi.org/10.1016/j.biopha.2009.03.005
Crab, R.; Avnimelech, Y.; Defoirdt, T.; Bossier, P.; Verstraete, W. 2007 Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture, 270(1-4): 1-14. https://doi.org/10.1016/j.aquaculture.2007.05.006
Cruz-Suárez, L.E.; León, A.; Peña-Rodríguez, A.; Rodríguez- Peña, G.; Moll, B.; Ricque-Marie, D. 2010. Shrimp: Ulva co-culture: A sustainable alternative to diminish the need for artificial feed and improve shrimp quality. Aquaculture, 301(1-4): 64-68. https://doi.org/10.1016/j.aquaculture.2010.01.021
Dimova, D.; Dobreva, D.; Panayotova, V.; Makedonski, L. 2019. Dpph antiradical activity and total phenolic content of methanol and ethanol extracts from macroalgae (Ulva rigida) and microalgae (Chlorella). Scripta Scientifica Pharmaceutica, 6(2): 37-41. https://doi.org/10.14748/ssp.v7i2.7369
Duke, C.S.; Litaker, W.; Ramus, J. 1989. Effects of temperature, nitrogen supply, and tissue nitrogen on ammonium uptake rates of the Chlorophyte seaweeds Ulva curvata and Codium decorticatum. Journal of Phycology, 25(1): 113-120. https://doi.org/10.1111/j.0022-3646.1989.00113.x
Eismann, A.I.; Reis, R.P.; Silva, A.F.; Cavalcanti, D.N. 2020 Ulva spp. Carotenoids: Responses to environmental conditions. Algal Research, 48: 101916. https://doi.org/10.1016/j.algal.2020.101916
Farasat, M.; Khavari-Nejad, R.A.; Nabavi, S.M.B.; Namjooyan, F. 2014. Antioxidant activity, total phenolics and flavonoid contents of some edible green seaweeds from northern coasts of the Persian Gulf. Iranian Journal of Pharmaceutical Research, 13(1): 163-170.
Gensler, W.G. 1986. Advanced agricultural instrumentation: design and use. Dordrecht: Springer. https://doi.org/10.1007/978-94-009-4404-6
Glasson, C.R.K.; Sims, I.M.; Carnachan, S.M.; Nys, R.; Magnusson, M. 2017. Cascading biorefinery process targeting sulfated polysaccharides (ulvan) from Ulva ohnoi. Algal Research, 27: 83-391. https://doi.org/10.1016/j.algal.2017.07.001
Goodwin, T.W. 1962. Carotenoids, their comparative biochemistry. New York: Chemical Pub. Co.
Guaratini, T.; Cardozo, K.H.M.; Pinto, E.; Colepicolo, P. 2009. Comparison of Diode Array and Electrochemical Detection in the C30 Reverse Phase HPLC Analysis of Algae Carotenoids. Journal of Brazilian Chemistry Society, 20(9): 1609-1616. https://doi.org/10.1590/S0103-50532009000900007
Hiscox, J.D.; Israelstam, G.F. 1979. A Method for Extraction of Chlorophyll from Leaf Tissue without Maceration. Journal of Botanic, 57(12): 1332-1334. https://doi.org/10.1139/b79-163
Hoang, T.H.; Qin, J.G.; Stone, D.A.J.; Harris, J.O.; Duong, D.N.; Bansemer, M.S. 2016. Colour changes of greenlip abalone (Haliotis laevigata Donovan) fed fresh macroalgae and dried algal supplement. Aquaculture, 456: 16-23. https://doi.org/10.1016/j.aquaculture.2016.01.022
Imchen, T. 2012. Recruitment Potential of a Green Alga Ulva flexuosa Wulfen Dark Preserved Zoospore and Its Development. PLoS ONE, 7(3): e32651. https://doi.org/10.1371/journal.pone.0032651
Jamovi project. 2022. jamovi. (Version 2.3) [Computer Software]. Available at: https://www.jamovi.org. Accessed on: Oct. 24, 1995.
Kakinuma, M.; Coury, D.A.; Kuno, Y.; Kozawa, Y.; Inagaki, E.; Yoshiura, Y.; Amano, H. 2006. Physiological and biochemical responses to thermal and salinity stresses in a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta). Marine Biology, 149(1): 97-106. https://doi.org/10.1007/s00227-005-0215-y
Kakinuma, M.; Kuno, Y.; Amano, H. 2004. Salinity stress responses of a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta. Fisheries Science, 70(6): 1177-1179. https://doi.org/10.1111/j.1444 2906.2004.00921.x
Karnjanapratum, S.; You, S.G. 2011. Molecular characteristics of sulfated polysaccharides from Monostroma nitidum and their in vitro anticancer and immunomodulatory activities. International Journal of Biological Macromolecules, 48(2): 311-318. https://doi.org/10.1016/j.ijbiomac.2010.12.002
Khanjani, M.H.; Zahedi, S.; Mohammadi, A. 2022. Integrated multitrophic aquaculture (IMTA) as an environmentally friendly system for sustainable aquaculture: functionality, species, and application of biofloc technology (BFT). Environmental Science Pollution Research, 29(45): 67513-67531. https://doi.org/10.1007/s11356-022-22371-8
Khoi, L.V.; Fotedar, R. 2011. Integration of western king prawn (Penaeus latisulcatus kishinouye, 1896) and green seaweed (Ulva lactuca Linnaeus, 1753) in a closed recirculating aquaculture system. Aquaculture, 322-323: 201-209. https://doi.org/10.1016/j.aquaculture.2011.09.030
Lahaye, M.; Axelos, M.A.V. 1993. Gelling properties of watersoluble polysaccharides fromproliferating marine green seaweed (Ulva spp.). Carbohydrates Polymers, 22(4): 261-265. https://doi.org/10.1016/0144-8617(93)90129-R
Lapointe, B.E.; Tenore, K.R. 1981. Experimental outdoor studies with Ulva fasciata Delile. I. Interaction of light and nitrogen on nutrient uptake, growth, and biochemical composition. Journal of Experimental Marine Biology and Ecology, 53(2-3): 135-152. https://doi.org/10.1016/0022-0981(81)90015-0
Legarda, E.C.; Silva, D.; Miranda, C.S.; Pereira, P.K.M.; Martins, M.A.; Machado, C.; Lorenzo, M.A.; Hayashi, L.; Vieira, F.N. 2021. Sea lettuce integrated with Pacific white shrimp and mullet cultivation in biofloc impact system performance and the sea lettuce nutritional composition. Aquaculture, 534: 736265. https://doi.org/10.1016/j.aquaculture.2020.736265
Machado, H.; Nagem, T.J.; Peter, V.M.; Fonseca, C.S.; Oliveira, T.T. 2008. Flavonoids and potential therapeutic. Boletim do Centro de Biologia da Reprodução, 27(1-2): 33-39.
Martins, M.A.; Silva, V.F.; Tarapuez, P.R.; Hayashi, L.; Vieira, F.N. 2020 Cultivation of the seaweed Ulva spp. with effluent from a shrimp biofloc rearing system: Different species and stocking density. Boletim do Instituto de Pesca, 46(3): e602. https://doi.org/10.20950/1678-2305.2020.46.3.602
Morais, A.P.M.; Santos, I.L.; Carneiro, R.F.S.; Routledge, E.A.B.; Hayashi, L.; Lorenzo, M.A.; Vieira, F.N. 2023.
Integrated multitrophic aquaculture system applied to shrimp, tilapia, and seaweed (Ulva ohnoi) using biofloc technology. Aquaculture, 572: 739492. https://doi.org/10.1016/j.aquaculture.2023.739492
Naldi, M.; Viaroli, P. 2002. Nitrate uptake and storage in the seaweed Ulva rigida C. Agardh in relation to nitrate availability and thallus nitrate content in a eutrophic coastal lagoon (Sacca di Goro, Po River Delta, Italy). Journal of Experimental Marine Biology and Ecology, 269(1): 65-83. https://doi.org/10.1016/S0022-0981(01)00387-2
Nelson, S.G.; Glenn, E.P.; Conn, J.; Moore, D.; Walsh, T.; Akutagawa, M. 2001. Cultivation of Gracilaria parvispora (Rhodophyta) in shrimp-farm effluent ditches and floating cages in Hawaii: a two-phase polyculture system. Aquaculture, 193(3-4): 239-248. https://doi.org/10.1016/S0044-8486(00)00491-9
Notoya, M. 1999. Utilization of Ulva spp. and environmental restoration. Tokyo: Seizandou.
Ohno, M. 1988. Seasonal Changes of the Growth of Green Algae, Ulva sp. in Tosa Bay, Southern Japan. Marine fouling, 7(1-2): 13-17. https://doi.org/10.4282/sosj1979.7.13
Parekh, J.; Chanda, S.V. 2007. In vitro antimicrobial activity and phytochemical analysis of some Indian medicinal plants. Turkish Journal of Biology, 31(1): 53-58.
Paulert, R.; Talamini, V.; Cassolato, J.E.F.; Duarte, M.E.R.; Noseda, M.D.; Smania Junior, A.; Stadnik, M.J. 2009. Effects of sulfated polysaccharide and alcoholic extracts from green seaweed Ulva fasciata on anthracnose severity and growth of common bean (Phaseolus vulgaris L.). Journal of Plant Diseases and Protection, 116: 263-270. https://doi.org/10.1007/BF03356321
Pedra, A.G.M.; Ramlov, F.; Maraschin, M.; Hayashi, L. 2017. Cultivation of the red seaweed Kappaphycus alvarezii with effluents from shrimp cultivation and brown seaweed extract: Effects on growth and secondary metabolism. Aquaculture, 479: 297-303. https://doi.org/10.1016/j.aquaculture.2017.06.005
Peso-Echarri, P.; Frontela-Saseta, C.; González-Bermúdez, C.A.; Ros-Berruezo, G.F.; Martinez-Graciá, C. 2012. Polisacáridos de algas como ingredientes funcionales en acuicultura marina: alginato, carragenato y ulvano. Revista de Biología Marina y Oceagrafía, 47(3): 373-381. https://doi.org/10.4067/S0718-19572012000300001
Pitta, J.P.M.P.; Pontes, M.D.; Castelar, B.; Hamacher, C. 2022. Desempenho de curto prazo de Ulva fasciata produzida em diferentes densidades em aquicultura multitrófica integrada. Conjecturas, 22(9): 1-17. https://doi.org/10.53660/CONJ-1385-AG05
Qi, H.; Liu, X.; Zhang, J.; Duan, Y.; Wang, X.; Zhang, Q. 2012. Synthesis and antihyperlipidemic activity of acetylated derivative of ulvan from Ulva pertusa. International Journal of Biological Macromolecules, 50(1): 270-272. https://doi.org/10.1016/j.ijbiomac.2011.11.006
Ray, B.; Lahaye, M. 1995. Cell-wall polysaccharides from the marine green alga Ulva “rigida” (ulvales, chlorophyta). Extraction and chemical composition. Carbohydrate Research, 274: 252-261. https://doi.org/10.1016/0008-6215(95)00138-J
Raymundo, M.S.; Horta, P.; Fett, R. 2004. Atividade antioxidante in vitro de extratos de algumas algas verdes (Chlorophyta) do litoral catarinense (Brasil). Revista Brasileira Ciências Farmaceutica, 40(4): 495-503. https://doi.org/10.1590/S1516-93322004000400007
Revilla-Lovano, S.; Sandoval-Gil, J.M.; Zertuche-González, J.A.; Belando-Torrentes, M.D.; Bernardeau-Esteller, J.; Rangel-Mendoza, L.K.; Ferreira-Arrieta, A.; Guzmán-Calderón, J.M.; Camacho-Ibar, V.F.; Muñiz-Salazar, R.; Ávila-López, M.C. 2021. Physiological responses and productivity of the seaweed Ulva ohnoi (Chlorophyta) under changing cultivation conditions in pilot large land-based ponds. Algal Research, 56: 102316. https://doi.org/10.1016/j.algal.2021.102316
Randhir, R.; Shetty, P.; Shetty, K. 2002. L-Dopa and total phenolic stimulation in dark germinated fava bean in response to peptide and phytochemical elicitors. Process Biochemistry, 37(11): 1247-1256. https://doi.org/10.1016/S0032-9592(02)00006-7
Ronen, R.; Galun, M. 1984. Pigment extraction from lichens with dimethyl sulfoxide (DMSO) and estimation of chlorophyll degradation. Environmental and Experimental Botany, 24(3): 239-245. https://doi.org/10.1016/0098-8472(84)90004-2
Seal, T.; Halder, N.; Chaudhuri, K.; Sinha, S.N. 2015. Evaluation of antioxidant activities of algae and effect of solvent extraction system. International Journal of Pharmaceutical Sciences and Research, 6(3): 1273. https://doi.org/10.13040/IJPSR.0975-8232.6(3).1273-78
Sebök, S.; Herppich, W.B.; Hanelt, D. 2017. Development of an innovative ring-shaped cultivation system for a land-based cultivation of marine macroalgae. Aquacultural Engineering, 77: 33-41. https://doi.org/10.1016/j.aquaeng.2017.01.005
Silva, K.R.; Wasielesky Junior, W.; Abreu, P.C. 2013. Nitrogen and phosphorus dynamics in the biofloc production of the Pacific white shrimp, Litopenaeus vannamei. Journal of the World Aquaculture Society, 44(1): 30-41. https://doi.org/10.1111/jwas.12009
Stengel, D.B.; Connan, S.; Popper, Z.A. 2011. Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnology Advances, 29(5): 483-501. https://doi.org/10.1016/j.biotechadv.2011.05.016
Strickland, J.D.H.; Parsons, T.R. 1972. A practical handbook of seawater analysis. Ottawa: Fisheries Research Board of Canada. Thakur, D.P.; Lin, C.K. 2003. Water quality and nutrient budget in closed shrimp (Penaeus monodon) culture systems. Aquacultural Engineering, 27(3): 159-176. https://doi.org/10.1016/S0144-8609(02)00055-9
Troell, M.; Halling, C.; Neori, A.; Choppin, T.; Buschmann, A.H.; Kautsky, N.; Yarish, C. 2003. Integrated mariculture: asking the right questions. Aquaculture, 226(1-4): 69-90. https://doi.org/10.1016/S0044-8486(03)00469-1
Valente, L.M.P.; Rema, P.; Gouveia, A.; Matos, J. 2006. Evaluation of three seaweeds Gracilaria bursa-pastoris, Ulva rigida and Gracilaria cornea as dietary ingredients in European sea bass (Dicentrarchus labrax) juveniles. Aquaculture, 252(1): 85-91. https://doi.org/10.1016/j.aquaculture.2005.11.052
Van Wyk, P.; Scarpa, J. 1999. Water Quality and Management. In: Van Wyk, P.; Davis-Hodgkins, M.; Laramore, R.; Main, K.L.; Mountain, J.; Scarpa, J. (eds.). Farming Marine Shrimp in Recirculating Freshwater Systems. Tallahassee: Division of Aquaculture. pp. 128-138.
Xu, Y.; Fang, J.; Tang, Q.; Lin, J.; Le, G.; Liao, L.V. 2008a. Improvement of water quality by the macroalga, Gracilaria lemaneiformis (Rhodophyta), near aquaculture effluent outlets. Journal World Aquaculture Society, 39(4): 441-571. https://doi.org/10.1111/j.1749-7345.2008.00180.x
Xu, Y.; Fang, J.; Wei, W. 2008b. Application of Gracilaria lichenoides (Rhodophyta) for alleviating excess nutrients in aquaculture. Journal of Applied Phycology, 20(2): 199-203. https://doi.org/10.1007/s10811-007-9219-y
Yong, Y.S.; Yong, W.T.L.; Anton, A. 2013. Analysis of formulae for determination of seaweed growth rate. Journal of Applied Phycology, 25: 1831-1834. https://doi.org/10.1007/s10811-013-0022-7
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Jamilly Sousa Rocha, Daniele Santos, Mateus Aranha Martins, Claúdia Marlene Bauer, Marcelo Maraschin, Leila Hayashi, Felipe do Nascimento Vieira
This work is licensed under a Creative Commons Attribution 4.0 International License.