Perspective and potential of grape co-products for aquaculture
DOI:
https://doi.org/10.20950/1678-2305/bip.2024.51.e921Keywords:
Viticulture, Co-products, Aplication, AquacultureAbstract
The growing demand for aquaculture feed, combined with environmental concerns, has driven the search for sustainable alternatives to conventional feed ingredients. Grape by-products, such as pomace, stalks, seeds, and skin, have great potential because of their nutritional properties, including high concentrations of dietary fiber, proteins, lipids, vitamins, and bioactive compounds, such as polyphenols. The compounds present in these by-products have bioactive properties that can benefit the health of aquatic organisms. Despite the significant discharge of these byproducts into the environment, their inclusion in fish and shrimp diets can improve zootechnical parameters such as growth performance, health, and meat quality, while contributing to the sustainability of aquaculture, reducing waste, and promoting a more efficient production cycle. This article aimed to explore the applicability of viticulture by-products in aquaculture, highlighting the beneficial effects of the bioactive compounds present in these by-products and discussing their potential for use in aquaculture production.
References
Adeshina, I., & Abdel-Tawwab, M. (2020). Dietary taurine incorporation to high plant protein-based diets improved growth, biochemical, immunity, and antioxidants biomarkers of African catfish, Clarias gariepinus (B.). Fish Physiology and Biochemistry, 46(6), 1323-1335. https://doi.org/10.1007/S10695-020-00791-Y
Albuquerque, M. A. C., Levit, R., Beres, C., Bedani, R., LeBlanc, A. M., Saad, S. M. I., & LeBlanc, J. G. (2019). Tropical fruit by-products water extracts of tropical fruit by-products as sources of soluble fibres and phenolic compounds with potential antioxidant, anti-inflammatory, and functional properties. Journal of Functional Foods, 52, 724-733. https://doi.org/10.1016/j.jff.2018.12.002
Arciuli, M., Fiocco, D., Fontana, S., Arena, M. P., Frassanito, M. A., & Gallone, A. (2017). Administration of a polyphenolenriched feed to farmed sea bass (Dicentrarchus labrax L.): Kidney melanomacrophages response. Fish and Shellfish Immunology, 68, 404-410. https://doi.org/10.1016/j.fsi.2017.07.043
Ardiansyah & Fotedar, R. (2016). Water quality, growth and stress responses of juvenile barramundi (Lates calcarifer Bloch), reared at four different densities in integrated recirculating aquaculture systems. Aquaculture, 458, 113-120. https://doi.org/10.1016/j.aquaculture.2016.03.001
Arslan, G., Sönmez, A. Y., & Yank, T. (2018). Effects of grape (Vitis vinifera) seed oil supplementation on growth, survival, fatty acid profiles, antioxidant contents, and blood parameters in rainbow trout (Oncorhynchus mykiss). Aquaculture Research, 49(6), 2256-2266. https://doi.org/10.1111/are.13686
Atatoprak, T., Amorim, M. M., Ribeiro, T., Pintado, M., & Madureira, A. R. (2022). Grape stalk valorization for fermentation purposes. Food Chemistry: Molecular Sciences, 4, 100067. https://doi.org/10.1016/j. fochms.2021.100067
Baldissera, M. D., Souza, C. F., Descovi, S. N., Verdi, C. M., Zeppenfeld, C. C., Silva, A. S., Santos, R. C. V., & Baldisserotto, B. (2019a). Grape pomace flour ameliorates Pseudomonas aeruginosa-induced bioenergetic dysfunction in gills of grass carp. Aquaculture, 506, 359- 366. https://doi.org/10.1016/j.aquaculture.2019.03.065
Baldissera, M. D., Souza, C. F., Descovi, S. N., Verdi, C. M., Zeppenfeld, C. C., Silva, L. L., Gindri, A. L., Cunha, M. A., Santos, R. C. V., Baldisserotto, B., & Silva, A. S. (2019b). Effects of dietary grape pomace flour on the purinergic signaling and inflammatory response of grass carp experimentally infected with Pseudomonas aeruginosa. Aquaculture, 503, 217-224. https://doi.org/10.1016/j.aquaculture.2019.01.015
Balea, Ş. S., Pârvu, A. E., Pârvu, M., Vlase, L., Dehelean, C. A., Pop, T. I. (2020). Antioxidant, anti inflammatory and antiproliferative effects of the Vitis vinifera L. var. Fetească Neagră and Pinot Noir pomace extracts. Frontiers in Pharmacology, 11, 1-11. https://doi.org/10.3389/fphar.2020.00990
Barros, E. S. C., de Amorim, M. C. C., Olszevski, N., & Silva, P. T. de S. E. (2021). Composting of winery waste and characteristics of the final compost according to Brazilian legislation. Journal of Environmental Science and Health, Part B, 56(5), 447-457. https://doi.org/10.1080/03601234.2021.1900694
Basalan, M., Gungor, T., Owens, F. N., & Yalcinkaya, I. (2011). Nutrient content and in vitro digestibility of Turkish grape pomaces. Animal Feed Science and Technology, 169(3-4), 194-198. https://doi.org/10.1016/j.anifeedsci.2011.07.005
Baydar, N. G., & Akkurt, M. (2001). Oil content and oil quality properties of some grape seeds. Turkish Journal of Agriculture and Forestry, 25(3), 163-168. https://journals.tubitak.gov.tr/agriculture/vol25/iss3/3
Beres, C., Costa, G. N. S., Cabezudo, I., Silva-James, N. K., Teles, A. S. C., Cruz, A. P. G., Mellinger-Silva, C., Tonon, R. V., Cabral, L. M. C., & Freitas, S. P. (2017). Towards integral utilization of grape pomace from winemaking process: A review. Waste Management, 68, 581-594. https://doi.org/10.1016/j.wasman.2017.07.017
Beres, C., Freitas, S. P., Godoy, R. L. de O., Oliveira, D. C. R., Deliza, R., Iacomini, M., Mellinger-Silva, C., & Cabral, L. M. C. (2019). Antioxidant dietary fibre from grape pomace flour or extract: Does it make any difference on the nutritional and functional value? Journal of Functional Foods, 56, 276-285. https://doi.org/10.1016/j.jff.2019.03.014
Bordiga, M., Travaglia, F., & Locatelli, M. (2019). Valorisation of grape pomace: an approach that is increasingly reaching its maturity: a review. Food Science and Technology, 54(4), 933-642. https://doi.org/10.1111/ijfs.14118
Brenes, A., Viveros, A., Chamorro, S., & Arija, I. (2016). Use of polyphenol-rich grape by-products in monogastric nutrition: A review. Animal Feed Science and Technology, 211, 1-17. https://doi.org/10.1016/j.anifeedsci.2015.09.016
Bucić-Kojić, A., Fernandes, F., Silva, T., Planinic, M., Selo, G., Sibalic, D., Pereira, D. M., & Andrade, P. B (2020). Enhancement of the anti-inflammatory properties of grape pomace treated by Trametes versicolor. Food Function, 11(1), 680-688. https://doi.org/10.1039/c9fo02296a
Bustamante, M. A., Paredes, C., Morales, J., Mayoral, A. M., & Moral, R. (2009). Study of the composting process of winery and distillery wastes using multivariate techniques. Bioresource Technology, 100(20), 4766-4772. https://doi.org/10.1016/j.biortech.2009.04.033
Butnariu, M., & Butu, A. (2019). Qualitative and quantitative chemical composition of wine. In A. M. Grumezescu & A. M. Holban (Eds.), Quality Control in the Beverage Industry (Vol. 17, pp. 385-417). Elsevier. https://doi.org/10.1016/B978-0-12-816681-9.00011-4
Câmara, J. S., Lourenço, S., Silva, C., Lopes, A., Andrade, C., & Perestrelo, R. (2020). Exploring the potential of wine industry by-products as source of additives to improve the quality of aquafeed. Microchemical Journal, 155, 104758. https://doi.org/10.1016/j.microc.2020.104758
Campos, D. A., Gómez‐García, R., Vilas‐Boas, A. A., Madureira, A. R., & Pintado, M. M. (2020). Management of fruit industrial by‐products—a case study on circular economy approach. Molecules, 25(2), 320. https://doi.org/10.3390/molecules25020320
Chakka, A. K., Sriraksha, M. S., & Ravishankar, C. N. (2021). Sustainability of emerging green non-thermal technologies in the food industry with food safety perspective: A review. LWT, 151, 112140. https://doi.org/10.1016/j.lwt.2021.112140
Chedea, V. S., Pelmus, R. S., Lazar, C., Pistol, G. C., Calin, L. G., Toma, S. M., Dragomir, C., & Taranu, I. (2017). Effects of a diet containing dried grape pomace on blood metabolites and milk composition of dairy cows. Journal of the Science of Food and Agriculture, 97(8), 2516-2523. https://doi.org/10.1002/jsfa.8068
Chen, B., Qiu, J., Wang, Y., Huang, W., Zhao, H., Zhu, X., & Peng, K. (2022). Condensed tannins increased intestinal permeability of Chinese seabass (Lateolabrax maculatus) based on microbiome-metabolomics analysis. Aquaculture, 560, 738615. https://doi.org/10.1016/j.aquaculture.2022.738615
Cheng, B. S., Bible, J. M., Chang, A. L., Ferner, M. C., Wasson, K., Zabin, C. J., Latta, M., Deck, A., Todgham, A. E., & Groshholz, E. (2015). Testing local and global stressor impacts on a coastal foundation species using an ecologically realistic framework. Global Change Biology, 21(7), 2488-2499. https://doi.org/10.1111/gcb.12895
Chien, A., Chou, C. Y., Cheng, Y. C., Sheen, S. S., & Kirby, R. (2023). The optimal dietary level of dry grape extract and its effect on the growth performance and antioxidant activity of the white shrimp Litopenaeus vannamei. Aquaculture Reports, 29, 101527. https://doi.org/10.1016/j.aqrep.2023.101527
Cosenza, J. P., De Andrade, E. M., & De Assunção, G. M. (2020). A circular economy as an alternative for Brazil’s sustainable growth: Analysis of the national solid waste policy. Revista de Gestão Ambiental e Sustentabilidade, 9(1), e16147. https://doi.org/10.5585/GEAS.V9I1.16147
Cruz, R. G., Beney, L., Gervais, P., Lira, S. P., Vieira, T. M. F. S., & Dupont, S. (2019). Comparison of the antioxidant property of acerola extracts with synthetic antioxidants using an in vivo method with yeasts. Food Chemistry, 277, 698-705. https://doi.org/10.1016/j.foodchem.2018.10.099
Das, R., & Bhattacharjee, C. (2020). Grapes. In A. K. Jaiswal (Ed.), Nutritional Composition and Antioxidant Properties of Fruits and Vegetables (pp. 695-708). Elsevier. https://doi.org/10.1016/B978-0-12-812780-3.00043-X
Davis, K. F., Downs, S., & Gephart, J. A. (2021). Towards food supply chain resilience to environmental shocks. Nature Food, 2, 54-65. https://doi.org/10.1038/s43016-020-00196-3
Dawood, M. A. O., Eweedah, N. M., Khalafalla, M. M., Khalid, A., Asely, A., Fadl, S. E., Amin, A. A., Paray, B. A., & Ahmed, H. A. (2020). Saccharomyces cerevisiae increases the acceptability of Nile tilapia (Oreochromis niloticus) to date palm seed meal. Aquaculture Reports, 17, 100314. https://doi.org/10.1016/j.aqrep.2020.100314
Dawood, M. A. O., & Koshio, S. (2019). Application of fermentation strategy in aquafeed for sustainable aquaculture. Aquaculture Reports, 12(2), 987-1002. https://doi.org/10.1111/raq.12368
De Alencar, M. G., de Quadros, C. P., Luna, A. L. L. P., Figueiredo Neto, A., Costa, M. M., Queiroz, M. A. A., Carvalho, F. A. L., Araújo, D. H. S., Gois, G. C., Santos, V. L. A., Silva Filho, J. R. V., & Rodrigues, R. T. S. (2022). Grape skin flour obtained from wine processing as an antioxidant in beef burgers. Meat Science, 194, 108963. https://doi.org/10.1016/j.meatsci.2022.108963
Deamici, K. M., de Oliveira, L. C., da Rosa, G. S., & de Oliveira, E. G. (2016). Drying kinetics of fermented grape pomace: Determination of moisture effective diffusivity. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(8), 763-768. https://doi.org/10.1590/1807-1929/agriambi.v20n8p763-768
Deng, Q., Penner, M. H., & Zhao, Y. (2011). Chemical composition of dietary fiber and polyphenols of five different varieties of wine grape pomace skins. Food Research International, 44(9), 2712-2720. https://doi.org/10.1016/j.foodres.2011.05.026
Devesa-Rey, R., Vecino, X., Varela-Alende, J. L., Barral, M. T., Cruz, J. M., & Moldes, A. B. (2011). Valorization of winery waste vs. the costs of not recycling. Waste Management, 31(11), 2327-2335. https://doi.org/10.1016/j.wasman.2011.06.001
Ding, Z., Ge, Y., Sar, T., Kumar, V., Harirchi, S., Binod, P., Sirohi, R., Sindhu, R., Wu, P., Lin, F., Zhang, Z., Taherzadeh, M. J., Awasthi, M. K. (2023). Valorization of tropical fruit waste for production of commercial biorefinery products - A review. Bioresource Technology, 374, 128793. https://doi.org/10.1016/j.biortech.2023.128793
Erinle, T. J., & Adewole, D. I. (2022). Fruit pomaces - their nutrient and bioactive components, effects on growth and health of poultry species, and possible optimization techniques. Animal Nutrition, 9, 357-377 https://doi.org/10.1016/j.aninu.2021.11.011
Escobar, N., Tizado, E. J., zu Ermgassen, E. K. H. J., Löfgren, P., Börner, J., & Godar, J. (2020). Spatially explicit footprints of agricultural commodities: Mapping carbon emissions embodied in Brazil’s soy exports. Global Environmental Change, 62, 102067. https://doi.org/10.1016/j.gloenvcha.2020.102067
Fabjanowicz, M., Różańska, A., Abdelwahab, N. S., Pereira- Coelho, M., Haas, I. C. S., Madureira, L. A. S., & Plotka-Wasylka, J. (2024). An analytical approach to determine the health benefits and health risks of consuming berry juices. Food Chemistry, 432, 137219. https://doi.org/10.1016/j.foodchem.2023.137219
Falcone, D. B., Klinger, A. C. K., Salete, G., & Toledo, P. D. (2022). Fruit residues in rabbits’ nutrition— review. Revista Científica Rural 24, 51-63.: https://doi.org/10.29327/246831.24.1-5
Food and Agriculture Organization (FAO) (2021). World Food and Agriculture - Statistical Yearbook 2021. FAO. https://doi.org/10.4060/cb4477en
Food and Agriculture Organization (FAO) (2022). The State of World Fisheries and Aquaculture 2022. FAO. https://doi.org/10.4060/cc0461en FAOSTAT (2025). Crops and livestock products. Retrieved from https://www.fao.org/faostat/en/#data/QCL
Ferrari, V., Taffarel, S. R., Espinosa-Fuentes, E., Oliveira, M. L. S., Saikia, B. K., & Oliveira, L. F. S. (2019). Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers. Journal of Cleaner Production, 208, 297-306. https://doi.org/10.1016/j.jclepro.2018.10.032
Filipe, D., Gonçalves, M., Fernandes, H., Oliva-Teles, A., Peres, H., Belo, I., & Salgado, J. M. (2023). Shelf-life performance of fish feed supplemented with bioactive extracts from fermented olive mill and winery by products. Foods, 12(2), 305. https://doi.org/10.3390/foods12020305
Filippi, K., Papapostolou, H., Alexandri, M., Vlysidis, A., Myrtsi, E. D., Ladakis, D., Pateraki, C., Haraoutounian, S. A., & Koutinas, A. (2022). Integrated biorefinery development using winery waste streams for the production of bacterial cellulose, succinic acid, and value-added fractions. Bioresource Technology, 343, 125989. https://doi.org/10.1016/j.biortech.2021.125989
Foti, M., Piattelli, M., Baratta, M. T., & Ruberto, G. (1996). Flavonoids, coumarins, and cinnamic acids as antioxidants in a micellar system. structure-activity relationship. Journal of Agricultural and Food Chemistry, 44(2), 497-501. https://doi.org/10.1021/jf950378u
Gil-Sánchez, I., Ayuda-Durán, B., González-Manzano, S., Santos-Buelga, C., Cueva, C., Martín-Cabrejas, M. A., Sanz-Buenhombre, M., Guadamarra, A., Moreno-Arribas, M. V., & Bartolomé, B. (2017). Chemical characterization and in vitro colonic fermentation of grape pomace extracts. Journal of the Science of Food and Agriculture, 97(10), 3433-3444. https://doi.org/10.1002/jsfa.8197
Gonçalves, A. A. (2011). Tecnologia do pescado: Ciências, tecnologia, inovação e legislação. Atheneu.
Gopinathan, M., & Thirumurthy, M. (2012). Feasibility studies on static pile co-composting of organic fraction of municipal solid waste with dairy wastewater. Environmental Research, Engineering and Management, 60(2), 34-39. https://doi.org/10.5755/j01.erem.60.2.963
Harikrishnan, R., Devi, G., Van Doan, H., Balasundaram, C., Esteban, M. A., & Abdel-Tawwab, M. (2021). Impact of grape pomace flour (GPF) on immunity and immune-antioxidantanti-inflammatory genes expression in Labeo rohita against Flavobacterium columnaris. Fish and Shellfish Immunology, 111, 69-82. https://doi.org/10.1016/j.fsi.2021.01.011
Hassan, Y. I., Kosir, V., Yin, X., Ross, K., & Diarra, M. S. (2019). Grape pomace as a promising antimicrobial alternative in feed: A critical review. Journal of Agricultural and Food Chemistry, 67(35), 9705-9718. https://doi.org/10.1021/acs.jafc.9b02861
Huang, Q., Liu, X., Zhao, G., Hu, T., & Wang, Y. (2018). Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Animal Nutrition, 4(2), 137-150. https://doi.org/10.1016/j.aninu.2017.09.004
International Organization of Vine and Wine (2022). Annual assessment of the world Vine and wine sector in 2022. International Organization of Vine and Wine.
Jiang, L., Gao, Y., Han, L., Zhang, W., & Fan, P. (2023). Designing plant flavonoids: Harnessing transcriptional regulation and enzyme variation to enhance yield and diversity. Frontiers in Plant Science, 14, 1220062. https://doi.org/10.3389/fpls.2023.1220062
Jiang, Y., Simonsen, J., & Yanyun, Z. (2011). Compressionmolded biocomposite boards from red and white wine grape pomaces. Journal of Applied Polymer Science, 119(5), 2834-2846. https://doi.org/10.1002/app.32961
Kabir, F., Tow, W. W., Hamauzu, Y., Katayama, S., Tanaka, S., & Nakamura, S. (2015). Antioxidant and cytoprotective activities of extracts prepared from fruit and vegetable wastes and by-products. Food Chemistry, 167, 358-362. https://doi.org/10.1016/j.foodchem.2014.06.099
Kesbiç, O. S., & Yigit, M. (2019). Structural and chemical changes of grape seed extract after thermal processing and its use in rainbow trout (Oncorhynchus mykiss) diets as an organic feed supplement. Aquaculture, 503, 275-281. https://doi.org/10.1016/j.aquaculture.2019.01.021
Khan, N., Fahad, S., Naushad, M., & Faisal, S. (2020). Grape production critical review in the world. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3595842
Kokou, F., & Fountoulaki, E. (2018). Aquaculture waste production associated with antinutrient presence in common fish feed plant ingredients. Aquaculture, 495, 295-310. https://doi.org/10.1016/j.aquaculture.2018.06.003
Kruidenier, L., Kuiper, I., Lamers, C., & Verspaget, H. W. (2003). Intestinal oxidative damage in inflammatory bowel disease: semi-quantification, localization, and association with mucosal antioxidants. Journal of Pathology, 201(1), 28-36. https://doi.org/10.1002/path.1409
Lange, B., Currie, K. L., Howarth, G. S., & Stone, D. A. J. (2014). Grape seed extract and dried macroalgae, Ulva lactuca Linnaeus, improve survival of greenlip abalone, Haliotis laevigata Donovan, at high water temperature. Aquaculture, 433, 348-360. https://doi.org/10.1016/j.aquaculture.2014.06.028
Lazzari, R., Uczay, J., Henriques, J. K. S., Durigon, E. G., Kunz, D. F., Peixoto, N. C., Fronza, D. (2019). Growth and digestive enzymes of silver catfish fed diets containing fruit residue. Arquivos Brasileiros de Medicina Veterinária e Zootecnia, 71(1), 323-330. https://doi.org/10.1590/1678-4162-10343
Leal, I. F. (2018). Resíduo seco da industrialização da acerola na alimentação de suínos na fase inicial (Dissertation, Universidade Estadual do Oeste do Paraná). https://tede.unioeste.br/handle/tede/4025
Lu, R. H., Qin, C. B., Yang, F., Zhang, W. Y., Zhang, Y. R., Yang, G. K., Yang, L. P., Meng, X. L., Yan, X., & Nie, G. X. (2020). Grape seed proanthocyanidin extract ameliorates hepatic lipid accumulation and inflammation in grass carp (Ctenopharyngodon idella). Fish Physiology and Biochemistry, 46, 1665-1677. https://doi.org/10.1007/s10695-020-00819-3
Mendes, J. A. S., Xavier, A. M. R. B., Evtuguin, D. V., & Lopes, L. P. C. (2013). Integrated utilization of grape skins from white grape pomaces. Industrial Crops and Products, 49, 286-291. https://doi.org/10.1016/j.indcrop.2013.05.003
Mohammadi, Y., Bahrami Kamangar, B., & Zarei, M. A. (2021). Effects of diets containing grape seed proanthocyanidin extract on the growth and oxidative capacity of common carp (Cyprinus carpio). Aquaculture, 540, 736689. https://doi.org/10.1016/j.aquaculture.2021.736689
Molosse, V. L., Deolindo, G. L., Lago, R. V. P., Cécere, B. G. O., Zotti, C. A., Vedovato, M., Copetti, P. M., Fracasso, M., Morsch, V. M., Xavier, A. C. H., Wagner, R., & Silva, A. S. (2023). The effects of the inclusion of ensiled and dehydrated grape pomace in beef cattle diet: Growth performance, health, and economic viability. Animal Feed Science and Technology, 302, 115671. https://doi.org/10.1016/j.anifeedsci.2023.115671
Montalvo, S., Martinez, J., Castillo, A., Huiliñir, C., Borja, R., García, V., & Salazar, R. (2020). Sustainable energy for a winery through biogas production and its utilization: A Chilean case study. Sustainable Energy Technologies and Assessments, 37, 100640. https://doi.org/10.1016/j.seta.2020.100640
Monteiro, G. C., Minatel, I. O., Pimentel Junior, A., Gomez-Gomez, H. A., Camargo, J. P. C., Diamante, M. S. Basílio, L. S. P., Tecchio, M. A., & Lima, G. P. P. (2021). Bioactive compounds and antioxidant capacity of grape pomace flours. LWT, 135, 110053. https://doi.org/10.1016/J.LWT.2020.110053
Morante, V. H. P., Copatti, C. E., Souza, A. R. L., Costa, M. M., Braga, L. G. T., Souza, A. M., Melo, F. V. S. T., Camargo, A. C. S., & Melo, J. F. B. (2021). Assessment of crude grape extract as a feed additive for tambaqui (Colossoma macropomum), an omnivorous fish. Aquaculture, 544, 737068. https://doi.org/10.1016/j.aquaculture.2021.737068
Mousavi, S., Sheikhzadeh, N., Hamidian, G., Mardani, K., Oushani, A. K., Firou zamandi, M., Esteban, M. A., & Shohreh, P. (2021). Changes in rainbow trout (Oncorhynchus mykiss) growth and mucosal immune
parameters after dietary administration of grape (Vitis vinifera) seed extract. Fish Physiology and Biochemistry, 47, 547-563. https://doi.org/10.1007/s10695-021-00930-z
Nazima, B., Manoharan, V., & Prabu, S. M. (2015). Grape seed proanthocyanidins ameliorates cadmium induced renal injury and oxidative stress in experimental rats through the upregulation of nuclear related factor 2 (Nrf2) and antioxidant responsive elements. Biochemistry and Cell Biology, 93(3), 210-226. https://doi.org/10.1139/bcb-2014-0114
Nerantzis, E. T., & Tataridis, P. (2006). Integrated enology-Utilization of winery by-products into high added value products. e-Journal of Science and Technology, 1, 79-89.
Nicolai, M., Pereira, P., Rijo, P., Amaral, O., Amaral, A., & Palma, L. (2018). Vitis vinifera L. pomace: Chemical and nutritional characterization. Journal of Biomedical and Biopharmaceutical Research, 15(2), 156-166. https://doi.org/10.19277/bbr.15.2.182
Nirmal, N. P., Khanashyam, A. C., Mundanat, A. S., Shah, K., Babu, K. S., Thorakkattu, P., Al-Asmari, F., & Pandiselvam, R. (2023). Valorization of fruit waste for bioactive compounds and their applications in the food industry. Foods, 12(3), 556. https://doi.org/10.3390/foods12030556
Oliveira, R. M., Oliveira, F. M., Hernandes, J. V., & Jnacques, C. (2016). Composição centesimal de farinha de uva elaborada com bagaço da indústria vitivinícola. Revista CSBEA, 2(1), 2-7.
Onivogui, G., Letsididi, R., Diaby, M., Wang, L., & Song, Y. (2016). Influence of extraction solvents on antioxidant and antimicrobial activities of the pulp and seed of Anisophyllea laurina R. Br. ex Sabine fruits. Asian Pacific Journal of Tropical Biomedicine, 6(1), 20-25. https://doi.org/10.1016/j.apjtb.2015.09.023
Ouriveis, N. F., Costa Leite, B. F., Gimenes, N. K., Gomes, M. N. B., Faria, F. J. C., Souza, A. S., & Brumatti, R. C. (2020). Fatores relacionados ao consumo da carne de peixe pela população de Campo Grande, MS, Brasil. Brazilian Journal of Development, 6(1), 1861-1872. https://doi.org/10.34117/bjdv6n1-131
Passos, C. P., Yilmaz, S., Silva, C. M., & Coimbra, M. A. (2009). Enhancement of grape seed oil extraction using a cell wall degrading enzyme cocktail. Food Chemistry, 115(1), 48-53. https://doi.org/10.1016/j.foodchem.2008.11.064
Pazos, M., Gallardo, J. M., Torres, J. L., & Medina, I. (2005). Activity of grape polyphenols as inhibitors of the oxidation of fish lipids and frozen fish muscle. Food Chemistry, 92(3), 547-557. https://doi.org/10.1016/j.foodchem.2004.07.036
Pedras, B. M., Regalin, G., Sá-Nogueira, I., Simões, P., Paiva, A., & Barreiros, S. (2020). Fractionation of red wine grape pomace by subcritical water extraction/hydrolysis. Journal of Supercritical Fluids, 160, 104793. https://doi.org/10.1016/j.supflu.2020.104793
Peixoto, C. M., Dias, M. I., Alves, M. J., Calhelha, R. C., Barros, L., Pinho, S. P., & Ferreira, I. C. F. R. (2018). Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chemistry, 253, 132-138. https://doi.org/10.1016/J.FOODCHEM.2018.01.163
Peña, E., Badillo-Zapata, D., Viana, M. T., & Correa-Reyes, G. (2020). Use of grape pomace in formulated feed for the rainbow trout fry, Oncorhynchus mykiss (Walbaum, 1792). Journal of the World Aquaculture Society, 51, 542-550. https://doi.org/10.1111/jwas.12669
Peng, K., Chen, B., Wang, Y., Zhao, H., Zheng, C., Chen, X., & Huang, W. (2022a). Condensed tannins protect against aflatoxin B1-induced toxicity in Lateolabrax maculatus by restoring intestinal integrity and regulating bacterial microbiota. Aquaculture, 555, 738255. https://doi.org/10.1016/j.aquaculture.2022.738255
Peng, K., Chen, B., Zhao, H., Wang, Y., Zheng, C., Lu, H., Huang, M., Zhao, J., & Huang, W. (2022b). Reevaluation of dietary condensed tannins on growth, antioxidant and immune response, and muscle quality of Chinese seabass (Lateolabrax maculatus). Aquaculture, 558, 738413. https://doi.org/10.1016/j.aquaculture.2022.738413
Peng, K., Huang, W., Zhao, H., Sun, Y., & Chen, B. (2021). Dietary condensed tannins improved growth performance and antioxidant function but impaired intestinal morphology of Litopenaeus vannamei. Aquaculture Reports, 21, 100853. https://doi.org/10.1016/j.aqrep.2021.100853
Peng, K., Zhou, Y., Wang, Y., Wang, G., Huang, Y., & Cao, J. (2020). Inclusion of condensed tannins in Lateolabrax japonicus diets: Effects on growth, nutrient digestibility, antioxidant and immune capacity, and copper sulfate stress resistance. Aquaculture Reports, 18, 100525. https://doi.org/10.1016/J.AQREP.2020.100525
Shiel, B. P., Hall, N. E., Cooke, I. R., Robinson, N. A., Stone, D. A. J., & Strugnell, J. M. (2017). The effect of commercial, natural and grape seed extract supplemented diets on gene expression signatures and survival of greenlip abalone (Haliotis laevigata) during heat stress. Aquaculture, 479, 798-807. https://doi.org/10.1016/j.aquaculture.2017.07.025
Sinrod, A. J. G., Shah, I. M., Surek, E., & Barile, D. (2023). Uncovering the promising role of grape pomace as a modulator of the gut microbiome: An in-depth review. Heliyon, 9(10), e20499. https://doi.org/10.1016/j.heliyon.2023.e20499
Sirohi, R., Tarafdar, A., Singh, S., Negi, T., Gaur, V. K., Gnansounou, E., & Bharathiraja, B. (2020). Green processing and biotechnological potential of grape pomace: Current trends and opportunities for sustainable biorefinery. Bioresource Technology, 314, 123771. https://doi.org/10.1016/j.biortech.2020.123771
Sławińska, N., & Olas, B. (2023). Selected seeds as sources of bioactive compounds with diverse biological activities. Nutrients, 15(1), 187. https://doi.org/10.3390/nu15010187
Sousa, E. C., Uchôa-Thomaz, A. M. A., Carioca, J. O. B., Morais, S. M., Lima, A., Martins, C. G., Alexandrino, C. D., Ferreira, P. A. T., Rodrigues, A. L. M., Rodrigues, S. P., Silva, J. N., & Rodrigues, L. L. (2014). Chemical composition and bioactive compounds of grape pomace (Vitis vinifera L.), Benitaka variety, grown in the semiarid region of Northeast Brazil. Food Science and Technology, 34(1), 135-142. https://doi.org/10.1590/S0101-20612014000100020
Spinei, M., & Oroian, M. (2021). The potential of grape pomace varieties as a dietary source of pectic substances. Foods, 10(4), 867. https://doi.org/10.3390/foods10040867
Tang, G. Y., Zhao, C. N., Liu, Q., Feng, X. L., Xu, X. Y., Cao, S. Y., Meng, X., Li, S., Gan, R. Y., & Li, H. B. (2018). Potential of grape wastes as a natural source of bioactive compounds. Molecules, 23(10), 2598. https://doi.org/10.3390/molecules23102598
Teixeira, N., Mateus, N., de Freitas, V., & Oliveira, J. (2018). Wine industry by-product: Full polyphenolic characterization of grape stalks. Food Chemistry, 268, 110-117. https://doi.org/10.1016/j.foodchem.2018.06.070
Terzi, F., Demirci, B., Acar, Ü., Yüksel, S., Salum, Ç., Erol, H. S., & Kesbiç, O. S. (2023). Dietary effect of grape (Vitis vinifera) seed extract mitigates hepatic disorders caused by oxidized fish oil in rainbow trout (Oncorhynchus mykiss). Fish Physiology and Biochemistry, 49, 441-454. https://doi.org/10.1007/s10695-023-01193-6
Teshome, E., Teka, T. A., Nandasiri, R., Rout, J. R., Harouna, D. V., Astatkie, T., & Urugo, M. M. (2023). Fruit by-products and their industrial applications for nutritional benefits and health promotion: A comprehensive review. Sustainability, 15(10), 7840. https://doi.org/10.3390/su15107840
Tonon, R. V., Silva, C. M., Galdeano, M. C., & Santos, K. M. O. (2018). Tecnologias para o aproveitamento integral dos resíduos da indústria vitivinícola. Embrapa Agroindústria de Alimentos.
Trošt, K., Klančnik, A., Mozetič Vodopivec, B., Lemut, M. S., Novsak, K. J., Raspor, P., & Mozina, S. S. (2016). Polyphenol, antioxidant and antimicrobial potential of six different white and red wine grape processing leftovers. Journal of the Science of Food and Agriculture, 96(14), 4809-4820. https://doi.org/10.1002/jsfa.7981
Unusan, N. (2020). Proanthocyanidins in grape seeds: An updated review of their health benefits and potential uses in the food industry. Journal of Functional Foods, 67, 103861. https://doi.org/10.1016/j.jff.2020.103861
Villacís-Chiriboga, J., Elst, K., Van Camp, J., Vera, E., & Ruales, J. (2020). Valorization of byproducts from tropical fruits: Extraction methodologies, applications, environmental, and economic assessment: A review (Part 1: General overview of the byproducts, traditional biorefinery practices, and possible applications). Comprehensive Reviews in Food Science and Food Safety, 19(2), 405-447. https://doi.org/10.1111/1541-4337.12542
Viswanath, M., Venkataramudu, K., Srinivasulu, B., Gopal, K., & Lakshmi, K. S. (2018). Processing for value addition of minor fruits. Journal of Pharmacognosy and Phytochemistry, 7(6), 1555-1559.
Wang, Y., Chen, X. H., Cai, G., & Zhai, S. (2022). Grape seed proanthocyanidin extract regulates lipid metabolism of the American eel (Anguilla rostrata). Natural Product Research, 36(22), 5889-5893. https://doi.org/10.1080/14786419.2021.2022666
Wang, Y., Wang, Y., Shen, W., Wang, Y., Cao, Y., Nuerbulati, N., Chen, W., Lu, G., Xiao, W., & Qi, R. (2020). Grape seed polyphenols ameliorated dextran sulfate sodium-induced colitis via suppression of inflammation and apoptosis. Pharmacology, 105(1-2), 9-18. https://doi.org/10.1159/000501897
Yadav, A., Kumar, N., Upadhyay, A., Pratibha, & Anurag, R. K. (2023). Edible packaging from fruit processing waste: A comprehensive review. Food Reviews International, 39(4), 2075-2106. https://doi.org/10.1080/87559129.2021.1940198
Yang, H., Li, Y., Wang, G., Xie, J., Kaneko, G., & Yu, E. (2023). Dietary grape seed proanthocyanidin extract improved the chemical composition, antioxidant capacity, myofiber growth and flesh quality of Nile tilapia muscle. Aquaculture Reports, 33, 101878. https://doi.org/10.1016/j.aqrep.2023.101878
Yilmaz, Y., Göksel, Z., Erdoğan, S. S., Ozturk, A., Atak, A., & Ozer, C. (2015). Antioxidant activity and phenolic content of seed, skin and pulp parts of 22 grape (Vitis vinifera L.) cultivars (4 common and 18 registered or candidate for registration). Journal of Food Processing and Preservation, 39(6), 1682-1691. https://doi.org/10.1111/jfpp.12399
Yu, J., & Ahmedna, M. (2013). Functional components of grape pomace: Their composition, biological properties and potential applications. International Journal of Food Science and Technology, 48(2), 221-237. https://doi.org/10.1111/j.1365-2621.2012.03197.x
Zacharof, M. P. (2017). Grape winery waste as feedstock for bioconversions: Applying the biorefinery concept. Waste and Biomass Valorization, 8, 1011-1025. https://doi.org/10.1007/s12649-016-9674-2
Zhai, S. W., Lu, J. J., & Chen, X. H. (2014). Effects of dietary grape seed proanthocyanidins on growth performance, some serum biochemical parameters and body composition of tilapia (Oreochromis niloticus) fingerlings. Italian Journal of Animal Science, 13(3), 3357. https://doi.org/10.4081/ijas.2014.3357
Zhao, J. X., Li, Q., Zhang, R. X., Liu, W. Z., Ren, Y. S., Zhang, C. X., & Zhang, J. X. (2018). Effect of dietary grape pomace on growth performance, meat quality and antioxidant activity in ram lambs. Animal Feed Science and Technology, 236, 76-85. https://doi.org/10.1016/j.anifeedsci.2017.12.004
Zhu, Y., Luan, Y., Zhao, Y., Liu, J., Duan, Z., & Ruan, R. (2023). Current technologies and uses for fruit and vegetable wastes in a sustainable system: A review. Foods, 12(10), 1949. https://doi.org/10.3390/foods12101949
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Cybele Pinheiro Guimarães, Marcelo Borges Tesser

This work is licensed under a Creative Commons Attribution 4.0 International License.