FERMENTED AND NON-FERMENTED WHOLE RICE BRAN IN THE PRODUCTION OF THE ROTIFER <i>Brachionus plicatilis</i>

Authors

DOI:

https://doi.org/10.20950/1678-2305.2020.46.2.577

Keywords:

Rice bran;, population growth;, production;, nutrition;, solid-state fermentation.

Abstract

The objective of the present study was to evaluate the use of fermented and non-fermented whole rice bran for rotifer feeding, based on the effects on growth parameters, antioxidant and oxidative damage responses, and water quality. The study was based on three experiments, which compared the effect of different concentrations of non-fermented whole rice bran, the effect of different concentrations of fermented whole rice bran and the effect of the best concentrations of fermented and non-fermented whole rice bran, as well as the replacement of part of the baking yeast by rice bran. The results showed the best growth performances in treatments with 0.7 g yeast with 1.5 g fermented rice bran, 0.35 g yeast with 0.75 g whole rice bran, and 0.35 g yeast with 0.75 g fermented rice bran. Fermentation of rice bran for 6 hours did not induce oxidative stress in rotifers. This work revealed that the use of 1.5 g of fermented bran and replacement of 50% of yeast with fermented or non-fermented rice bran may be used for rotifer feeding, with the additional benefit of improving the environmental quality due to the lower amount of ammonia released in the water.

References

Abdull, R.A.R.; Cob, Z.C.; Jamari, Z.; Mohamed, A.M.; Toda, T.; Ross, O.H. 2018. The Effects of Microalgae as Live Food for Brachionus plicatilis (Rotifer) in Intensive Culture System. Tropical Life Sciences Research, 29: 127-138. http://dx.doi.org/10.21315/tlsr2018.29.1.9

Amado, L.L.; Garcia, M.L.; Ramos, P.B.; Freitas, R.F.; Zafalon, B.; Ferreira, J.L.R.; Yunes, J.S.; Monserrat, J.M. 2009. A method to measure total antioxidant capacity against peroxyl radicals in aquatic organisms: application to evaluate microcystins toxicity. Science of Total Environment, 407: 2115-2123. http://dx.doi.org/10.1016/j.scitotenv.2008.11.038

APHA - American Public Health Association. 1998. Standard methods for the examination of water and wastewater. Washington. 1193p.

Aminot, A.; Chaussepied, M. 1983. Manuel des analyses chimiques en milieu marin. Brest: CNEXO. 395p.

Amissah, J.G.N.; Ellis W.O.; Oduro, I.; Manfu, J.T.L. 2003. Nutrient composition of bran from new rice varieties under study in Ghana. Food Control, 14: 21-24. http://dx.doi.org/10.1016/S0956-7135(02)00047-6

AOAC í  Association of Official Analytical Chemists. 1999 Official methods of analysis of the Association of Official Analytical Chemists. 16th ed. Washington: AOAC.

Christ-Ribeiro, A.; Graça, C.S.; Chiattoni, L.M.; Massarolo, K.C.; Duarte, F.A.; Mellado, M.; Sousa-Soares, L.A. 2017. Fermentation Process in the Availability of Nutrients in Rice Bran. Research & Reviews: Journal of Microbiology and Biotechnology, 6(2): 45-52.

Christ-Ribeiro, A.; Graça, C.S.; Kupski, L.; Badiale-Furlong, E.; Souza-Soares, L.A. 2019. Cytotoxicity, antifungal and anti mycotoxins effects of phenolic compounds from fermented rice bran and Spirulina sp. Process Biochemistry, 80: 190-196. http:// dx.doi.org/10.1016/j.procbio.2019.02.007.

Coelho, G.F.; Júnior, A.C.G.; Sousa, R.F.B.; Schwantes, D.; Miola, A.J.; Domingues, C.V.R. 2014. Uso de técnicas de adsorção utilizando resí­­duos agroindustriais na remoção de contaminantes em águas. Journal of Agronomic Sciences, 3: 291-317.

Denekamp, N.Y.; Thome, M.A.; Clark, M.S.; Kube, M.; Reinhardt, R.; Lubzens, E. 2009. Discovering genes associated with dormancy in the monogonont rotifer Brachionus plicatilis. BMC Genomics 10: 108. https://doi.org/10.1186/1471-2164-10-108

Dhert P.; Rombaut, G.; Suantika, G.; Sorgeloos, P. 2001. Advancement of rotifer culture and manipulation techniques in Europe. Aquaculture, 200: 129-146. http://dx.doi.org/10.1016/S0044-8486(01)00697-4

Drí­¶ge, W. 2002. Free radicals in the physiological control of cell function. Physiological Reviews, 82: 47-95.

Feddern, V.; Furlong, E.B.; Soares, L.A.S. 2007. Effects of fermentation on the physicochemical and nutritional properties of rice bran. Ciência e Tecnologia de Alimentos, 27: 800-804. http://dx.doi.org/10.1590/S0101-20612007000400020.

Ferreira, M.; Burgueno, A.C.; Freire, I.; Otero, A. 2018. Effect of nutritional status and concentration of Nannochloropsis gaditana as enrichment diet for the marine rotifer Brachionus sp. Aquaculture, 491: 351-357. http://dx.doi.org/10.1016/j.aquaculture.2018.03.024

Ferreira, P.M.P. 2009. Manual de cultivo e bioencapsulação da cadeia alimentar para a Larvicultura de peixes marinhos. Instituto Nacional de Recursos Biológicos I.P. IPIMAR. 240p.

Gilbert, J.J. 2004. Females from resting eggs and parthenogenetic eggs in the rotifer Brachionus calyciflorus: lipid droplets, starvation resistance and reproduction. Freshwater Biology, 49: 1505-1515. http://dx. doi.org/10.1111/j.1365-2427.2004.01282.x

Haiwei, L.; Dong, Y.; Liu, Y.; Wang, H. 2010. Screening of novel low-cost adsorbents from agricultural residues to remove ammonia nitrogen from aqueous solution. Journal of Hazardous Materials, 178: 1132-136. http://dx. doi.org/10.1016/j.jhazmat.2010.01.117

Hamre, K. 2016. Nutrient profiles of rotifers (Brachionus sp.) and rotifer diets from four different marine fish hatcheries. Aquaculture, 450: 136-142. http.//dx.doi.org/10.1016/j.aquaculture.2015.07.016

Hirayama, K.; Funamoto, H. 1983. Supplementary Effect of Several Nutrients on Nutritive Deficiency of Baker's yeast for Population Growth of the Rotifer Brachionus plicatilis. Bulletin of the Japanese Society of Scientific Fisheries, 49: 505-510. http://dx.doi.org/10.2331/suisan.49.505

Hisano, H.; Sampaio, F.G.; Barros, M.M.; Pezzato, L.E. 2008. Composição nutricional e digestibilidade aparente da levedura í­­ntegra, da levedura autolisada e da parede celular pela tilápia-do-nilo. Ciência Animal Brasileira, 9: 43-49.

Junqueira, O.M.; Duarte ,K.F.; Cancherini, L.C.; Araújo, L.F.; De Oliveira, M.C.; Garcia, E.A. 2009. Chemical composition, metabolizable energy and digestible amino acids values of rice by-products for broilers. Ciência Rural, 39: 2497-2503. http://dx.doi.org/10.1590/S0103-84782009005000197

Kailasam, M; Thirunavukkarasu, A.R.; Ponniah, A.G.; Selvaraj, S.; Stalin, P. 2015. Recent advances in rotifer culture and its application for larviculture of finfishes. In: Perumal, S.; Thirunavukkarasu, A.R.; Pachiappan, P. Advances in Marine and Brackishwater Aquaculture. Springer. pp.17-23.

Khalil, A.; Sergeevich, N.; Borisova, V. 2018. Removal of ammonium from fish farms by biochar obtained from rice straw: Isotherm and kinetic studies for ammonium adsorption. Adsorption Science & Technology, 36: 294-1309. http://dx.doi.org/10.1177/0263617418768944

Kim, H.J.; Lee, J.S.; Hagiwara, A. 2018. Phototactic behavior of live food rotifer Brachionus plicatilis species complex and its significance in larviculture: A review. Aquaculture, 497: 253-259. http://dx.doi.org/10.1016/j.aquaculture.2018.07.070

Kolkovski, S. 2013. Microdiets as alternatives to live feeds for fish larvae in aquaculture: improving the efficiency of feed particle utilization. Advances in Aquaculture Hatchery Technology, pp.203-222. http://dx.doi.org/10.1533/9780857097460.1.203

Koroleff, F.; Palmork, K.H. 1972. Report on the Ices/ Scor nutrient intercalibration experiment. September. ICES, C.M. 1972/C: 21. Hydrography Committee.

Kostopoulou, V.; Vadstein, O. 2007. Growth performance of the rotifers Brachionus plicatilis, B. ‘Nevada’ and B. ‘Cayman’ under different food concentrations. Aquaculture, 273: 449 - 458. http://dx.doi.org/10.1016/j.aquaculture.2007.10.037

Kupski, L.; Cipolatti, E.; Rocha, M.; Oliveira, M.S.; Souza-Soares, L. A.; Badiale-Furlong, E. 2012. Solid-State Fermentation for the Enrichment and Extraction of Proteins and Antioxidant Compounds in Rice Bran by Rhizopus oryzae. Brazilian Archives of Biology Technology, 55: 937-942. http://dx.doi.org/10.1590/S1516-89132012000600018

Lubzens, E.; Zmora, O. 2003. Production and nutritional value of rotifers. In: Stottrup, J.G.; McEvoy, L.A. (eds.) Live Feeds in Marine Aquaculture. Blackwell publishing, Oxford, UK. pp. 17-52. https://doi.org/10.1002/9780470995143.ch2

Massarolo, K.C.; Souza, T.D.; Ribeiro, A.C.; Furlong, E.B.; De S Soares, L.A. 2016. Influence of cultivation Rhizopus oryzae on rice bran on lipid fraction: Fatty acids and phospholipids. Biocatalysis and Agricultural Biotechnology, 8: 204-208. http://dx.doi.org/10.1016/j.bcab.2016.10.002

Massarolo, K.C.; Ribeiro, A.C.; Furlong, E.B.;. De S Soares, L.A. 2017. Effect of particle size of rice bran on gamma-oryzanol content and compounds. Journal of Cereal Science, 75: 54-60. http://dx.doi.org/10.1016/j.jcs.2017.03.012

Monserrat, J.M.; Garcia, M.L.; Ventura-Lima, J.; Gonzalez, M.; Ballesteros, M.L.; Miglioranza, K.S.B.; Ame, M.V.; Wunderlin, D.A. 2014. Antioxidant, phase II and III responses induced by lipoic acid in the fish Jenynsia multidentata (Anablapidae) and its influence on endolsulfan accumulation and toxicity. Pesticide Biochemistry and Physiology, 108: 8-15. http://dx.doi.org/10.1016/j.pestbp.2013.10.009

Muller-Feuga, A. 2000. The role of microalgae in aquaculture: situations and trends. Journal of Applied Phycology, 12: 527-534.

Navarro-Yepes, J.; Burns, M.; Anandhan, A.; Khalimonchuk, O.; Del Razo, L.M.; Quintanilla- Veja, B.; Pappa, A.; Panayiotidis, M.I.; Franco, R. 2014. Oxidative stress, redox signaling, and autophagy: cell death versus survival. Antioxid. Redox Signal, 21: 66í 85.

Norsker, N.H.; Barbosa, M.J.; Vermuí­«, M.H.; Wijffels, R.H. 2011. Microalgal productionâ€"A close look at the economics. Biotechnology Advances, 29: 24-27. http://dx.doi:10.1016/j.biotechadv.2010.08.005

Oakes, K.D.; Van Der Kraak, G.J. 2003. Utility of the TBARS assay in detecting oxidative stress in white sucker (Catostomus commersoni) populations exposed to pulp mill effluent. Aquatic Toxicology, 63: 447-463. http://dx.doi.org/10.1016/S0166-445X(02)00204-7

Oliveira, M.S.; Feddern, V.; Kupski, L.; Cipolatti, E.P.; Badiale-Furlong, E.;. De Souza-Soares, L.A. 2010. Physico-chemical characterization of fermented rice bran biomass. CyTA - Journal of Food, 8(3): 229-236. http://dx.doi.org/ 10.1080/19476330903450274

Park, H.Y.; Lee, K.W.; Choi, H.D. 2017. Rice bran constituents: immunomodulatory and therapeutic activities. Food & Function Review, 8: 935-943. http://dx.doi.org/ 10.1039/c6fo01763k

Pelizer, L.H.; Pontieri, M.H.; Moraes, I.O. 2007. Utilização de resí­­duos agro-industriais em processos biotecnológicos como perspectiva de redução do impacto ambiental. Journal of Technology Management & Innovation, 2: 118í 127.

Rioboo, C.; Prado, R.; Herrero, C.; Cid, A. 2007. Population growth study of the rotifer Brachionus sp. fed with triazine-exposed microalgae. Aquatic Toxicology, 83: 247-253. http://dx.doi.org/10.1016/j.aquatox.2007.04.006

Sarma, S.S.; Larios-Jurado, P.S.; Nandini, S. 2001. Effect of the three food types on the population growth of Brachionus calyciflorus and Brachionus patulus (Rotifera: Brachionidae). Revista de Biologia Tropical, 49: 75-82.

Sevcikova, M.; Modra, H.; Slaninova, A.; Svobodova, Z. 2011. Metals as a cause of oxidative stress in fish: a review. Veterinarni Medicina, 56: 537-546.

Schmidt, C.G.; Cerqueira, M.A.; Vicente, A.A.; Teixeira ,J.Á.; Furlong, E.B. 2015. Rice bran protein-based films enriched by phenolic extract of fermented rice bran and montmorillonite clay. CyTA - Journal of Food, 13: 204-212. http://dx.doi.org/10.1080/19476337.2014.939998

Souza, M.M.; Recart, V.M.; Rocha, M.; Cipolatti, E.P.; Badiale-Furlong, E. 2009. Estudo das condições de extração de compostos fenólicos de cebola (Allium cepa L.). Revista do Instituto Adolfo Lutz, 68(2): 192í 200.

Vijayagopal, P.; Kajal, C.; Iyyapparajanarasimapallavan, G.; Anil, M.K.; Ignatitus, B.; Correia, Ns.; Vijayan, K.K. 2012. Development of live feed enrichment product for marine fish larviculture. Indian Journal of Fisheries, 59: 121í 125.

Wacker, A.; Martin-Creuzburg, D. 2012. Biochemical nutrient requirements of the rotifer Brachionus calyciflorus: co-limitation by sterols and amino acids. Functional Ecology, 26: 1135-1143. http://dx.doi.org/10.1111/j.1365-2435.2012.02047.x

Xie, F.; Koziar, S.A.; Lampi, M.A.; Dixon, D.G.; Norwood, W.P.; Borgmann, U.; Huang, H.; Greenberg, B.M. 2006. Assessment of the toxicity of mixtures of copper, 9, 10‐phenanthrenequinone, and phenanthrene to Daphnia magna: Evidence for a reactive oxygen mechanism. Environmental Toxicology and Chemistry, 25: 613-622. http://dx.doi.org/10.1897/05-256R.1

Yamada, E.A.; Alvim, I.D.; Santucci, M.C.C.; Sgarbieri, V.C. 2003. Composição centesimal e valor protéico de levedura residual da fermentação etanólica e de seus derivados. Revista de Nutrição., 16: 423-432. http://dx.doi.org/10.1590/S1415-52732003000400006

Yusof, A.M.; Keat, L.K.; Ibrahim, Z.; Majid, Z.A.; Nizam, N.A. 2010. Kinetic and equilibrium studies of the removal of ammonium ions from aqueous solution by rice husk ash-synthesized zeolite Y and powdered and granulated forms of mordenite. Journal of Hazardous Materials., 174: 380- 385. http://dx.doi.org/10.1016/j.jhazmat.2009.09.063

Zdradek, C.P. 2001. Otimização do crescimento dos fungos comestí­­veis P. ostreatus e P. sajor caju utilizando resí­­duos agro-industriais, Rio Grande, Brasil. 139p. (Dissertação de Mestrado. Universidade Federal do Rio Grande).

Downloads

Published

2020-10-07

Most read articles by the same author(s)