Excessive luminosity fades the skin color of cardinal tetra
DOI:
https://doi.org/10.20950/1678-2305.2018.44.4.319Keywords:
ornamental fish, tegument, chromatophores, light intensityAbstract
In order to understand the morphological and physiological changes on the loss of coloration in the tegument of cardinal tetra under excessive luminosity, specimens of Paracheirodon axelrodi were conditioned to different light intensities (0; 250; 500; 1,200 and 2,700 lux) at different time intervals (0, 12, 24 and 72 hours). Types of chromatophores, dispersion of melanosomes and density of chromatophores were analyzed after the experiment. The dark stripe on the species consists of yellowish-brown (dorsally located) and darkish-brown (medially located) melanophores. In the iridescent blue stripe, darkish-brown melanophores were closely associated with iridophores. Erythrophores were found only in the red stripe. Loss of skin color was observed when cardinal tetra was exposed to intense light. The melanic and neon stripes became pale due to a reduction in melanophores densities. On the other hand, the color of the red stripe was intensified due to the proliferation of erythrophores. At low light levels (0 to 250 lux), the melanophores (with dispersed melanosomes) proliferate in the black and neon stripes resulting in a more vibrant skin color. We suggest that in nature, the paleness of the skin may represent a camouflage strategy during the hours of the day with greater luminosity in the black water of the Rio Negro. Fading the skin color can help this species to visually confuse potential predators.
References
ABBOTT, K.R. 2010 Background evolution in camouflage systems: a predatorí prey/pollinator-flower game. Journal of Theoretical Biology, 262(4): 662í 678.
AMIRI, M.N.; SHAREEN, H.M. 2012 Chromatophores and color revelation in the blue variant of the Siamese fighting fish (Betta splendens). Micron, 43(2-3): 159í 169.
BRINN, R.P.; MARCON, J.; TAVARES-DIAS, M.; BRINN, I.M. 2009 Fluorescence detection of the ornamental fish cardinal tetra (Paracheirodon axelrodi). Photochemistry and Photobiology, 85(1): 358í 364.
CLOTHIER, J.; LYTHGOE, J.N. 1987 Light-induced colour changes by the iridophores of the Neon tetra, Paracheirodon innesi. Journal of Cell Science, 88(5): 663-668.
FUJII, R. 1993 Cytophysiology of fish chromatophores. International Review of Cytology, 143(1): 191-255.
FUJII, R. 2000 The regulation of motile activity in fish chromatophores. Pigment Cell Research, 13(5): 300-319.
GILBY, B.L. MARI, R.A.; BELL, E.G.; CRAWFORD, E.W.; JUN, D.; LEDERER, B.I.; TIBBETTS, I.R.; BURFEIND, D.D. 2015 Colour change in a filefish (Monacanthus chinensis) faced with the challenge of changing backgrounds. Environmental Biology of Fish, 98(9): 2021-2029.
GOULDING, M. 1980 The Fishes and the flooded forest: exploration in amazonian natural history. University of California Press, Berkeley, 280p.
HOGBEN, L.T.; SLOME, D. 1931 The pigmentary effector system. VI. The dual character of endocrine coordination in amphibian colour change. Proceeding Royal Society of London B, 108(755): 10í 53.
ITO, S.; WAKAMATSU, K. 2003 Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Research, 16(5): 523-531.
KALETA, K. 2009 Morphological analysis of chromatophores in the skin of trout. Bulletin of Veterinary Institute of Pulawy, 53(1): 117-121.
KELLEY, J.L.; DAVIES, W.L. 2016 The biological mechanisms and behavioral functions of Opsin-based light detection by skin. Frontier in Ecology and Evolution, 4(1): 1-13.
KELLEY, J.L.; TAYLOR, I.; HART, N.S.; PARTRIDGE, J.C. 2017 Aquatic prey use countershading camouflage to match the visual background. Behavioral Ecology, 28(5): 1314-1322.
LIGON, R.A; McCARTNEY, K.L. 2016 Biochemical regulation of pigment motility in vertebrate chromatophores: a review of physiological color change mechanisms. Current Zoology, 62(3): 237í 252.
LYTHGOE, J.N.; SHAND, J. 1982 Changes in spectral reflexions from the iridophores of the neon tetra. The Journal of Physiology, 325(1): 23í 34.
MARSHALL, B.G.; FORSBERG, B.R.; HESS, L.L.; FREITAS, C.E.C. 2011 Water temperature differences in interfluvial palm swamp habitats of Paracheirodon axelrodi and Paracheirodon simulans (Osteichthyes: Characidae) in the middle Rio Negro, Brazil. Ichthyological Exploration of Freshwaters, 22(4): 377-383.
Mí"žTHGER, L.M.; LAND, M.F.; SIEBECK, U.E.; MARSHALL, N.J. 2003 Rapid colour changes in multilayer reflecting stripes in the paradise whiptail, Pentapodus paradiseus. Journal of Experimental Biology, 206(20): 3607-3613.
MÉRONA, B.; RANKIN-DE-MERONA, J. 2004 Food resource partitioning in a fish community of the central Amazon floodplain. Neotropical Ichthyology, 2(2): 75-84.
NAGAISHI, H.; OSHIMA, N.; FUJII, R. 1990 Light-reflecting properties of the iridophores of the neon tetra, Paracheirodon innesi. Comparative Biochemistry and Physiology, 95(3): 337í 341.
NERY, M.E.L.; CASTRUCCI, L.M.A. 1997 Pigment cell signaling for physiological color change. Comparative Biochemistry and Physiology, 118(4): 1135-1144.
NILSSON, H. 2000 Melanosome and erythrosome positioning regulates cAMP induced movement in chromatophores in Spotted Triplefin, Grahamina capito. Journal Experimental Zoology, 287(3): 191-198.
OLIVEIRA, C.; FRANCO-BELUSSI, L. 2012 Melanie pigmentation in ectothermic vertebrates: occurrence and function. In: MA, X-P.; Sun, X-X. Melanin: biosynthesis, functions and health effects. Nova Science Publishers lnc, p. 213í 226.
OSHIMA, N. 2001 Direct Reception of Light by Chromatophores of Lower Vertebrates. Pigment Cell Research, 14(5): 312í 319
OSHIMA, N.; KASAI, A. 2002 Iridophores involved in generation of skin color in the Zebrafish, Brachydanio rerio. Forma, 17(2): 91í 101.
REZENDE, K.F.O.; BERGAMI, E.; ALVES, K.V.B.; CORSI, I.; BARBIERI, E. 2018 Titanium dioxide nanoparticles alters routine metabolism and causes histopathological alterations in Oreochromis niloticus. Boletim do Instituto de Pesca, 44(2): e343.
ROULIN, A.; MAFLI, A.; WAKAMATSU, K. 2013 Reptiles Produce Pheomelanin: Evidence in the Eastern Hermann's Tortoise (Eurotestudo boettgeri). Journal of Herpetology, 47(2): 258-261.
RUXTON, G.D.; SPEED, M.P.; KELLY, D.J. 2004 What, if anything, is the adaptive function of countershading? Animal Behaviour, 68(3): 445í 451.
SIVKA, U.; HALAÄÅ’KA, K.; BAJEC, S.S. 2012 Morphological differences in the skin of marble trout Salmo marmoratus and of brown trout Salmo trutta. Folia Histochemica et Cytobiologica, 50(2): 255í 262.
STEVENS, M.; MERILAITA, S. 2009 Animal camouflage: current issues and new perspectives. Philosophical Transactions of the Royal Society of London B Biological Sciences, 364(1516): 423í 427
STUART-FOX, D.; WHITING, M.J.; MOUSSALLI, A. 2006 Camouflage and colour change: antipredator responses to bird and snake predators across multiple populations in a dwarf chameleon. Biological Journal of the Linnean Society, 88(3): 437í 446.
SUGIMOTO, M. 2002 Morphological Color Changes in Fish: regulation of pigment cell density and morphology. Microscopy Research and Technique, 58(6): 496-503.
TAKAHASHI, A.; MIZUSAWA, K.; AMANO, M. 2014 Multifunctional roles of melanocyte-stimulating hormone and melanin-concentrating hormonein fish: evolution from classical body color change. Aqua-BioScience Monographs, 7(1): 1í 46.
WALKER, I. 2004 The food spectrum of the cardinal - tetra (Paracheirodon axelrodi, Characidae) in its natural habitat. Acta Amazônica, 34(1): 69-73.
WANG. Z.; PANT, B.C.; LANGFORD CH. 1990 Spectroscopic and structural characterization of a Laurentian fulvic acid: notes on the origin of the color. Analytica Chimica Acta, 232(1): 43-49
YOSHIOKA, S.; MATSUHANA, B.; TANAKA, S.; INOUYE, Y.; OSHIMA, N.; KINOSHITA, S. 2011 Mechanism of variable structural colour in the neon tetra: quantitative evaluation of the Venetian blind model. Journal of the Royal Society Interface, 8(54): 56-66.