LUMINOSIDADE EXCESSIVA REDUZ A COLORAÇÃO DA PELE DO CARDINAL TETRA

Autores

  • Regiane Monteiro LINHARES Universidade Federal do Amazonas -  UFAM, Laboratório de Morfologia Funcional
  • Celina Maria Müller Ferreira PINAGÉ Universidade Federal do Amazonas -  UFAM, Laboratório de Morfologia Funcional
  • Wallice Paxiúba DUNCAN Universidade Federal do Amazonas -  UFAM, Laboratório de Morfologia Funcional http://orcid.org/0000-0002-1279-7163

DOI:

https://doi.org/10.20950/1678-2305.2018.44.4.319

Palavras-chave:

peixe ornamental, tegumento, cromatóforos, intensidade luminosa

Resumo

Para compreender as mudanças morfológicas e fisiológicas da perda da coloração no tegumento do cardinal após exposição í­Â  luminosidade, exemplares de Paracheirodon axelrodi foram submetidos a diferentes intensidades luminosas (0, 250, 500, 1.200 e 2.700 lux), em diferentes intervalos de tempo (0, 12, 24 e 72 horas). Após a exposição, foram analisadas a dispersão dos melanossomos e a densidade de cromatóforos. A faixa de coloração escura do cardinal é constituí­­da por melanóforos de coloração marrom-amarelado (dorsalmente localizados) e marrom-escuro (latero-medial). Na faixa azul iridescente, os melanóforos de cor marrom-escuro estão intimamente associados aos iridóforos. Eritróforos foram encontrados apenas na faixa vermelha. Observou-se que a perda da coloração ocorre devido í­Â  exposição pela luminosidade excessiva. As faixas melí­¢nica e neon tornam-se pálidas devido í­Â  redução na densidade dos melanóforos, enquanto a faixa vermelha intensifica-se como resultado da proliferação de eritróforos. Em baixa luminosidade (0 a 250 lux), os melanóforos (com melanossomos dispersos) proliferam-se nas faixas melí­¢nica e neon realçando ainda mais as cores vibrantes do cardinal. Nós sugerimos que na natureza a palidez pode representar um padrão de camuflagem durante as horas de intensa luminosidade nas águas pretas do rio Negro. A redução da coloração na pele pode ajudar o cardinal a confundir potenciais predadores visuais.

Referências

AUCOUR, A.M.; TAO, F. X.; MOREIRA-TUREQ, P.; SEYLER, P.; SHEPPARD, S.; BENEDETTI, M.F. 2002 The Amazon River: behaviour of metals (Fe, Al, Mn) and dissolved organic matter in the initial mixing at the Rio Negro/Solimões confluence. Chemical Geology, 197(1-4): 271í 285.

ABBOTT, K.R. 2010 Background evolution in camouflage systems: a predatorí prey/pollinator-flower game. Journal of Theoretical Biology, 262(4): 662í 678.

AMIRI, M.N.; SHAREEN, H.M. 2012 Chromatophores and color revelation in the blue variant of the Siamese fighting fish (Betta splendens). Micron, 43(2-3): 159í 169.

BRINN, R.P.; MARCON, J.; TAVARES-DIAS, M.; BRINN, I.M. 2009 Fluorescence detection of the ornamental fish cardinal tetra (Paracheirodon axelrodi). Photochemistry and Photobiology, 85(1): 358í 364.

CLOTHIER, J.; LYTHGOE, J.N. 1987 Light-induced colour changes by the iridophores of the Neon tetra, Paracheirodon innesi. Journal of Cell Science, 88(5): 663-668.

FUJII, R. 1993 Cytophysiology of fish chromatophores. International Review of Cytology, 143(1): 191-255.

FUJII, R. 2000 The regulation of motile activity in fish chromatophores. Pigment Cell Research, 13(5): 300-319.

GILBY, B.L. MARI, R.A.; BELL, E.G.; CRAWFORD, E.W.; JUN, D.; LEDERER, B.I.; TIBBETTS, I.R.; BURFEIND, D.D. 2015 Colour change in a filefish (Monacanthus chinensis) faced with the challenge of changing backgrounds. Environmental Biology of Fish, 98(9): 2021-2029.

GOULDING, M. 1980 The Fishes and the flooded forest: exploration in amazonian natural history. University of California Press, Berkeley, 280p.

HOGBEN, L.T.; SLOME, D. 1931 The pigmentary effector system. VI. The dual character of endocrine coordination in amphibian colour change. Proceeding Royal Society of London B, 108(755): 10í 53.

ITO, S.; WAKAMATSU, K. 2003 Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Research, 16(5): 523-531.

KALETA, K. 2009 Morphological analysis of chromatophores in the skin of trout. Bulletin of Veterinary Institute of Pulawy, 53(1): 117-121.

KELLEY, J.L.; DAVIES, W.L. 2016 The biological mechanisms and behavioral functions of Opsin-based light detection by skin. Frontier in Ecology and Evolution, 4(1): 1-13.

KELLEY, J.L.; TAYLOR, I.; HART, N.S.; PARTRIDGE, J.C. 2017 Aquatic prey use countershading camouflage to match the visual background. Behavioral Ecology, 28(5): 1314-1322.

LIGON, R.A; McCARTNEY, K.L. 2016 Biochemical regulation of pigment motility in vertebrate chromatophores: a review of physiological color change mechanisms. Current Zoology, 62(3): 237í 252.

LYTHGOE, J.N.; SHAND, J. 1982 Changes in spectral reflexions from the iridophores of the neon tetra. The Journal of Physiology, 325(1): 23í 34.

MARSHALL, B.G.; FORSBERG, B.R.; HESS, L.L.; FREITAS, C.E.C. 2011 Water temperature differences in interfluvial palm swamp habitats of Paracheirodon axelrodi and Paracheirodon simulans (Osteichthyes: Characidae) in the middle Rio Negro, Brazil. Ichthyological Exploration of Freshwaters, 22(4): 377-383.

Mí­"žTHGER, L.M.; LAND, M.F.; SIEBECK, U.E.; MARSHALL, N.J. 2003 Rapid colour changes in multilayer reflecting stripes in the paradise whiptail, Pentapodus paradiseus. Journal of Experimental Biology, 206(20): 3607-3613.

MÉRONA, B.; RANKIN-DE-MERONA, J. 2004 Food resource partitioning in a fish community of the central Amazon floodplain. Neotropical Ichthyology, 2(2): 75-84.

NAGAISHI, H.; OSHIMA, N.; FUJII, R. 1990 Light-reflecting properties of the iridophores of the neon tetra, Paracheirodon innesi. Comparative Biochemistry and Physiology, 95(3): 337í 341.

NERY, M.E.L.; CASTRUCCI, L.M.A. 1997 Pigment cell signaling for physiological color change. Comparative Biochemistry and Physiology, 118(4): 1135-1144.

NILSSON, H. 2000 Melanosome and erythrosome positioning regulates cAMP induced movement in chromatophores in Spotted Triplefin, Grahamina capito. Journal Experimental Zoology, 287(3): 191-198.

OLIVEIRA, C.; FRANCO-BELUSSI, L. 2012 Melanie pigmentation in ectothermic vertebrates: occurrence and function. In: MA, X-P.; Sun, X-X. Melanin: biosynthesis, functions and health effects. Nova Science Publishers lnc, p. 213í 226.

OSHIMA, N. 2001 Direct Reception of Light by Chromatophores of Lower Vertebrates. Pigment Cell Research, 14(5): 312í 319

OSHIMA, N.; KASAI, A. 2002 Iridophores involved in generation of skin color in the Zebrafish, Brachydanio rerio. Forma, 17(2): 91í 101.

REZENDE, K.F.O.; BERGAMI, E.; ALVES, K.V.B.; CORSI, I.; BARBIERI, E. 2018 Titanium dioxide nanoparticles alters routine metabolism and causes histopathological alterations in Oreochromis niloticus. Boletim do Instituto de Pesca, 44(2): e343.

ROULIN, A.; MAFLI, A.; WAKAMATSU, K. 2013 Reptiles Produce Pheomelanin: Evidence in the Eastern Hermann's Tortoise (Eurotestudo boettgeri). Journal of Herpetology, 47(2): 258-261.

RUXTON, G.D.; SPEED, M.P.; KELLY, D.J. 2004 What, if anything, is the adaptive function of countershading? Animal Behaviour, 68(3): 445í 451.

SIVKA, U.; HALAÄÅ’KA, K.; BAJEC, S.S. 2012 Morphological differences in the skin of marble trout Salmo marmoratus and of brown trout Salmo trutta. Folia Histochemica et Cytobiologica, 50(2): 255í 262.

STEVENS, M.; MERILAITA, S. 2009 Animal camouflage: current issues and new perspectives. Philosophical Transactions of the Royal Society of London B Biological Sciences, 364(1516): 423í 427

STUART-FOX, D.; WHITING, M.J.; MOUSSALLI, A. 2006 Camouflage and colour change: antipredator responses to bird and snake predators across multiple populations in a dwarf chameleon. Biological Journal of the Linnean Society, 88(3): 437í 446.

SUGIMOTO, M. 2002 Morphological Color Changes in Fish: regulation of pigment cell density and morphology. Microscopy Research and Technique, 58(6): 496-503.

TAKAHASHI, A.; MIZUSAWA, K.; AMANO, M. 2014 Multifunctional roles of melanocyte-stimulating hormone and melanin-concentrating hormonein fish: evolution from classical body color change. Aqua-BioScience Monographs, 7(1): 1í 46.

WALKER, I. 2004 The food spectrum of the cardinal - tetra (Paracheirodon axelrodi, Characidae) in its natural habitat. Acta Amazônica, 34(1): 69-73.

WANG. Z.; PANT, B.C.; LANGFORD CH. 1990 Spectroscopic and structural characterization of a Laurentian fulvic acid: notes on the origin of the color. Analytica Chimica Acta, 232(1): 43-49

YOSHIOKA, S.; MATSUHANA, B.; TANAKA, S.; INOUYE, Y.; OSHIMA, N.; KINOSHITA, S. 2011 Mechanism of variable structural colour in the neon tetra: quantitative evaluation of the Venetian blind model. Journal of the Royal Society Interface, 8(54): 56-66.

Downloads

Publicado

2018-12-25

Edição

Seção

Artigo cientí­fico