LETHAL AND SUBLETHAL EFFECTS OF AMMONIA IN Deuterodon iguape (Eigenmann 1907), POTENTIAL SPECIES FOR BRAZILIAN AQUACULTURE
DOI:
https://doi.org/10.20950/1678-2305.2019.45.1.440Keywords:
Lambari, LC50, Nitrogenous compounds, O:N ratio, aquacultureAbstract
The cultivation of the lambari, Deuterodon iguape, supplies much of the Brazilian market with live bait for sport fishing. The high densities used to maximize production can increase the concentration of ammonia. In order to evaluate the sublethal and lethal effects of different concentrations of ammoniacal nitrogen (non-ionized ammonia plus ionized ammonia), D. iguape were exposed to this xenobiotic. The LC50 values â€"¹â€"¹for 24, 48, 72, 96 h of ammonia-N were 6.17, 5.57, 3.88 and 2.90 mg/L at 23°C. The LC50 values â€"¹â€"¹of 24, 48, 72, 96 h of NH3-N (non-ionized ammonia with nitrogen) were 0.015; 0.013; 0.009; 0.007 mg/L. The specific oxygen consumption increased at the ammonia-N concentrations tested. The values â€"¹â€"¹for the concentrations of 0.1; 0.25; 0.5 and 1.0 mg/L were: 0.25, 0.33; 0.31 and 0.44 mgO2/g/hr. At the concentration of 1.0 mg/L of ammonium chloride there was a 41.33% increase in the consumption level in relation to the control. Ammonia excretion also increased with increasing ammoniacal nitrogen concentration. The fish excreted, on average, 0.0320, 0.0364, 0.0368 and 0.0370 mg/g/h of ammonia. Comparing these results with the means of ammonia excretion of the control (0.0 mg/L), it was observed that these values â€"¹â€"¹represent an increase in the excretion of 146%, 177%, 189% and 184%, respectively. After 24 h of exposure to ammonia, the O:N ratio decreased by 43.46%. Our results indicate pronounced metabolic effects and increased toxicity with increasing ammonia concentrations. We recommend avoiding concentrations higher than 0.25 mg/L NH3-N in the culture water.
References
Barbieri, E. 2007. Use of metabolism and swimming activity to evaluate the sublethal toxicity of surfactant (LAS-C12) on Mugil platanus. Brazilian Archives of Biology and Technology, 50: 101-112
Barbieri, E, Medeiros, A.M.Z.; Henriques, M.B. 2015. Oxygen consumption and ammonia excretion of juvenile pink shrimp (Farfantepenaeus paulensis) in culture: temperature effects. Marine and Freshwater Behaviour and Physiology, 49: 19-25
Barbieri, E., Doi S.A. 2012. Acute toxicity of ammonia on juvenile Cobia (Rachycentron canadum, Linnaeus, 1766) according to the salinity. Aquaculture Internacional, 20(2): 373-382.
Barbieri, E.; Bondioli A.C.V. 2013. Acute toxicity of ammonia in Pacu fish (Piaractus mesopotamicus, Holmberg, 1887) at different temperatures levels. Aquaculture Research, 46: 565-571
Barbieri, E.; Ferrarini, A.M.T.; Rezende, K.F.O.; Martinez, D.S.T.; Alves, O.L. 2018. Effects of multiwalled carbon nanotubes and carbofuran on metabolism in Astyanax ribeirae, a native species. Fish Physiology and Biochemistry, 44: 1-10.
Bergerhouse, D.L. 2011. Lethal effects of elevated pH and ammonia on early life stages of walleye. North America Journal of Fisheries Management, 12(2): 356-366
Bilberg, K.; Malte, H.; Wang, T.; Baatrup, E. 2010. Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis), Aquatic Toxicology, 96(2):159-165
Bosisio, F., Rezende, K.F.O.; Barbieri, E. 2017. Alterations in the hematological parameters of Juvenile Nile Tilapia (Oreochromis niloticus) submitted to different salinities. Pan-American Journal of Aquatic Sciences, 12: 146-154
Boudou, A.; Ribeyre, F. 1989. Fish as ‘‘biological model’’ for experimental studies in ecotoxicology. In: Boudou A, Ribeyre F (eds) Aquatic ecotoxicology fundamental concepts and methodologies, vol VIII. CRC Press, Boca Raton, pp 127í 150
Brinkman, S.F.; Woodling, J.D.; Vajda, A.M.; Norris, D.O. 2009. Chronic Toxicity of Ammonia to Early Life Stage Rainbow Trout. Transactional of the American Fisheries Society, 138: 433í 440
Brydges, N.M.; Boulcott, P.; Ellis, T.; Braithwaite, V.A. 2009. Quantifying stress responses induced by different handling methods in three species of fish. Applied Animal Behaviour Science Abbreviation,116: 295-301
Cavero, B.A.S.; Pereira-Filho, M.; Bordinhon, A.M.; Fonseca, F.A.L.; Ituassú, D,R.; Roubach, R.; Ono, E.A. 2004. Tolerí¢ncia de juvenis de pirarucu ao aumento da concentração de amônia em ambiente confinado. Pesquisa Agropecuária Brasileira, 39(5): 513-516
Croux, P.; Julieta, M.; Loteste, A. 2004. Lethal effects of elevated pH and ammonia on juveniles of neotropical fish Colosoma macropomum (Pisces, Caracidae). Journal of Environmental Biology, 25(1): 7-10
Damato, M.; Barbieri, E. 2011. Determinação da toxicidade aguda de cloreto de amônia para uma espécie de peixe (Hyphessobrycon callistus) indicadora regional. O Mundo Saí¹de, 35(4): 401-407
Das, P.C.; Ayyappan, S.; Jena, J.K.; Das, B.K. 2004. Acute toxicity of ammonia and its subâ€Âlethal effects on selected haematological and enzymatic parameters of mrigal, Cirrhinus mrigala (Hamilton). Aquaculture Research, 35(2):134-143.
Ferrarini, A.M.T.; Rezende, K.F.O.; Barbieri, E. 2016. Use of Swimming Capacity to Evaluate the Effect of Mercury on Poecilia vivipara (Poecilídeos) According to Salinity and Temperature. Journal of Marine Biology & Oceanography, 5: 1-5.
Fivelstad, S.; Kallevik, H.; Iversen, H.M.; Mí¸retrí¸, T.; Ví¥ge, K., Binde, M. 1993. Sublethal effects of ammonia in soft water on Atlantic salmon smolts at a low temperature. Aquaculture Internacional, 1: 157-169.
Garcia, J.C.; Martinez, D.S.T.; Alves, O.L.; Barbieri, E. 2015. Ecotoxicological effects of carbofuran and oxidised multiwalled carbon nanotubes on the freshwater fish Nile tilapia: Nanotubes enhance pesticide ecotoxicity. Ecotoxicology and Environmental Safety, 111: 131-137.
Greenberg, A.E.1995. Standard Methods for the Examination of Water and Wastewater, 19th edition. ed. Amer Public Health Assn, Washington, DC
Hamilton, M.A.; Russo, R.C.; Thurston, R.V. 1977. Trimmed Spearman-Karber Method for Estimating Median Lethal Concentrations in Toxicity Bioassays. Environmental Science & Technology, 11(7): 714í 719
Ip, Y.K.; Chew, S.F. 2010. Ammonia production, excretion, toxicity, and defense in fish: A review. Frontiers in Physiology, 1: 1-20
Key, P.; Chung, K.; Siewicki, T.; Fulton, M. 2007. Toxicity of three pesticides individually and in mixture to larval grass shrimp (Palaemonetes pugio). Ecotoxicology and Environmental Safety, 68: 272-277
Khoo, K.H.; Ramette, R.N.; Culuerson, H.; Bates, R.G. 1977. Determination of hydrogen ion concentrations in seawater from 5 to 40°C: Standard potentials at salinities from 20 to 45‰. Analytical Chemistry, 49: 29-34
Lemaire, P.; Sturve, J.; Forlin, L.; Livingstone, D.R. 1996. Studies on aromatic hydrocarbon quinone metabolism and DT-diaphorase function in liver of fish species. Marinr Environment Research, 2: 317-321
Martinez, C.B.R.; Azevedo, F.; Winkaler, E.U. 2006. Toxicidade e efeitos da amônia em peixes neotropicais. In: José Eurico Possebon Cyrino; Elisabeth Criscuolo Urbinati. (Org.). Tópicos Especiais em Biologia Aquática e Aquicultura. Jaboticabal - SP: Sociedade Brasileira de Aquicultura e Biologia Aquática, p. 81-95
Martinez, D.S.T.; Alves, O. L.; Barbieri, E . 2013. Carbon nanotubes enhanced the lead toxicity on the freshwater fish. Journal of Physics. Conference Series, 429: p.012043.
Medeiros, R.S.; Lopez, B.A.; Sampaio, L.A.; Romano, L.A.; Rodrigues, R.V. 2016. Ammonia and nitrite toxicity to false clownfish Amphiprion ocellaris. Aquaculture Internacional, 24: 985-993
Miron, D.S.; Becker, A.G.; Loro, V.L.; Baldisserotto, B. 2011. Waterborne ammonia and silver catfish, Rhandia quelen: suvival and growth. Ciência Rural, 42(2): 349-353
Person-Le, R.J.; Chartois, H.; Quemener, L. 1995. Comparative acute ammonia toxicity in marine fish and plasma ammonia response. Aquaculture, 136: 181-194.
Rezende, K.F.O.; Bergami, E.; Alves, K.V.B.; Corsi, I.; Barbieri, E. 2018. Titanium dioxide nanoparticles alters routine metabolism and causes histopathological alterations in Oreochromis niloticus. Boletim do Instituto de Pesca, 44(2): 343-343.
Ruíz-Hidalgo, K.; Masís-Mora, M.; Barbieri, E.; Carazo-Rojas, E.; Rodríguez-Rodríguez, C.E. 2016. Ecotoxicological analysis during the removal of carbofuran in fungal bioaugmented matrices. Chemosphere, 144: 864-871.
Silva, N.J.R.; Lopes, M.C.; Fernandes, J.B.K.; Henriques, M.B. 2011a. Caracterização dos sistemas de criação e da cadeia produtiva do lambari no Estado de São Paulo. Informações Econômicas, 41(9), 17-28
Silva, N.R., Lopes, M.C.; Gonçalves, F.H.A.S.B.; Gonsales, G.Z.; Henriques, M.B. 2011b. Avaliação do potencial do mercado consumidor de lambari da Baixada Santista. Informações Econômicas, 41(12): 5-13
Smart, G. 1978. Investigation of the toxic mechanisms of ammonia to fish í gas Exchange in rainbow trout Salmo gairdneri exposed to acutely lethal concentrations. Journal of Fish Biology, 12(1): 93-104
Tilak, K.S.; Veeraiah, K.; Milton, J.; Raju, P. 2007. Effects of ammonia, nitrite and nitrate on hemoglobin content and oxygen consumption of freshwater fish, Cyprinus carpio (Linnaeus). Journal of Environmental Biology, 28(1): 45-47
Walker, C.H.; Hopkin, S.P.; Sibly, R.M.; Peakall, D.B. 1996. Principles of Ecotoxicology. Taylor & Francis, Londres, UK
Winkler, L. 1888. Methods for measurement of dissolved oxygen. Ber Deutsch Chem Ges, 21: 2843
Zeitoun, M.M.; El-Din, K.; Azrak, E.; Zaki, M.A.; Nemat-Allah, B.R.; Mehana, E.E. 2016. Effects of ammonia toxicity on growth performance, cortisol, glucose and hematological response of Nile Tilapia (Oreochromis niloticus). Aceh Journal of Animal Science 1(1): 21-28
Zhang, C.; Yu, K.; Li, F.; Xiang, J. 2017. Acute toxic effects of zinc and mercury on survival, standard metabolism, and metal accumulation in juvenile ridgetail white prawn, Exopalaemon carinicauda. Ecotoxicology and Environmental Safety, 145: 549-556