Do cage fish farms interfere with the food aspects of the wild species Metynnis lippincottianus (Characiformes, Serrasalmidae)?

Authors

DOI:

https://doi.org/10.20950/1678-2305/bip.2022.48.e722

Keywords:

aquaculture, environmental impact, non-native species, pelleted feed, trophic guild, wild species

Abstract

We evaluated the differences in the diet and trophic guild of Metynnis lippincottianus under the influence of cage fish farms in the Neotropical reservoir. We collected samples from two areas (cage farm and control) in March and June 2019. Stomach contents were examined, and food items were identified and quantified using the volumetric method. Differences in diet composition were evaluated using PERMANOVA and SIMPER analyses, while trophic niche breadth was determined using PERMDISP. The trophic guild for each area was also determined. Significant differences in diet between cage farm and control areas were observed, due to consumption of pelleted feed, microcrustaceans, Egeria sp., and filamentous algae. In both sampling areas, M. lippincottianus was classified as algivorous. Despite the pelleted feed consumption in the cage farm area, no differences were observed in trophic niche breadth and the trophic guild. In addition, algae and macrophytes still accounted for the majority of this species' diet in both areas, indicating partitioning of resources. This resource partitioning may favor coexistence, but it is worth mentioning that pelleted feed consumption still indicates the influence of cage fish farms on the diet of wild fish.

References

Abelha, M.F.C.; Agostinho, A.A.; Goulart, E. 2001. Plasticidade trófica em peixes de água doce. Acta Scientiarum, 23(2): 425-434. https://doi.org/10.4025/actascibiolsci.v23i0.2696

Agostinho, A.; Miranda, L.E.; Bini, L.M.; Gomes, L.C.; Thomaz, S.M.; Suzuki, H. 1999. Patterns of colonization in neotropical reservoirs, and prognoses on aging. In: Tundisi, J.G.; Straskraba, M.S. (eds.), Theoretical Reservoir Ecology and its application. IIE – International Institute of Ecology, São Carlos, pp. 227-265.

Anderson, M.J. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26(1): 32-46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x

Anderson, M.J. 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics, 62(1): 245-253. https://doi.org/10.1111/j.1541-0420.2005.00440.x

Barrett, L.T.; Swearer, S.E.; Harboe, T.; Karlsen, Ø.; Meier, S.; Dempster, T. 2018. Limited evidence for differential reproductive fitness of wild Atlantic cod in areas of high and low salmon farming density. Aquaculture Environment Interactions, 10: 369-383. https://doi.org/10.3354/AEI00275

Bicudo, C.E.M.; Bicudo, R.M.T. 1970. Algas de águas continentais brasileiras: chave ilustrada para identificação de gêneros. Fundação Brasileira para o Desenvolvimento do Ensino de Ciências, São Paulo, 222 pp.

Brandão, H.; Lobón-Cerviá, J.; Ramos, I.P.; Souto, A.C.; Nobile, A.B.; Zica, É.O.P.; Carvalho, E.D. 2012. Influence of a cage farming on the population of the fish species Apareiodon affinis (Steindachner, 1879) in the Chavantes reservoir, Paranapanema River SP/PR, Brazil. Acta Limnologica Brasiliensia, 24(4): 438-448. https://doi.org/10.1590/s2179-975x2013005000012

Brandão, H.; Nobile, A.B.; Souto, A.C.; Ramos, I.P.; Sousa, J.Q.; Carvalho, E.D. 2013. Influência de uma piscicultura em tanques-rede na dieta e atributos biológicos de Galeocharax knerii na represa de Chavantes, Brasil. Boletim do Instituto de Pesca, 39(2): 157-167.

Brandão, H.; Santana, J.C.D.O.; Ramos, I.P.; Carvalho, E.D. 2014. Influence of cage farming on feeding and reproductive aspects of Pimelodus maculatus Lacépède, 1803 (Siluriformes: Pimelodidae) in the Chavantes reservoir, Brazil. Acta Scientiarum. Biological Sciences, 36(1): 41-50. https://doi.org/10.4025/actascibiolsci.v36i1.21039

Cacho, J.C.S.; Moura, R.S.T.; Henry-Silva, G.G. 2020. Influence of Nile tilapia (Oreochromis niloticus) fish farming in net cages on the nutrient and particulate matter sedimentation rates in Umari reservoir, Brazilian semi-arid. Aquaculture Reports, 17: 100358. https://doi.org/10.1016/j.aqrep.2020.100358

CDRS. 2021. Levantamento das unidades de piscicultura no estado de São Paulo. Documento Técnico CDRS 123, 31 pp.

Clarke, K.R. 1993. Non‐parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18(1): 117-143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

Companhia Energética de São Paulo (CESP); DRENATEC Engenharia Ltda. 2009. UHE Ilha Solteira. Plano Ambiental de Conservação e Uso do Entorno de Reservatórios Artificial – PACUERA. Available at: http://licenciamento.ibama.gov.br/Hidreletricas/Ilha Solteira/UHE ILHA SOLTEIRA_PACUERA/PACUERA_relatório/. Accessed on: Feb. 2, 2022.

Costa, A.M.F.; Barbosa, C.C.; Barletta, M. 2011. Plastics buried in the inter-tidal plain of a tropical estuarine ecosystem. Journal of Coastal Research, 64: 339-343.

Cyrino, J.E.P.; Conte, L. 2004. Tilapicultura em gaiolas: Produção e economia. AquaCiência, 151-171. Available at: https://bdpi.usp.br/item/001551396. Accessed on: Feb. 2, 2022.

Demétrio, J.A.; Gomes, L.C.; Latini, J.D.; Agostinho, A.A. 2012. Influence of net cage farming on the diet of associated wild fish in a Neotropical reservoir. Aquaculture, 330-333: 172-178. https://doi.org/10.1016/j.aquaculture.2011.11.026

Dias, A.C.M.I.; Branco, C.W.C.; Lopes, V.G. 2005. The study of fish natural diet from Ribeirão das Lajes reservoir, Rio de Janeiro State, Brazil. Acta Scientiarum - Biological Sciences, 27(4): 355-364. https://doi.org/10.4025/actascibiolsci.v27i4.1270

Edwards, P. 2015. Aquaculture environment interactions: Past, present and likely future trends. Aquaculture, 447, 2-14. https://doi.org/http://dx.doi.org/10.1016/j.aquaculture.2015.02.001

El-Sayed, A.F.M. 2006. Tilapia culture. CABI, Wallingford, 277 pp.

Food and Agriculture Organization (FAO). 2020. The state of World Fisheries and Aquaculture 2020 - Sustainability in action. Food and Agriculture Organization of the United Nations, Rome, 244 pp.

Froese, R.; Pauly, D. 2019. FishBase. Available at: https://www.fishbase.se/summary/Metynnis-lippincottianus.html. Accessed on: Feb. 2, 2022.

Garcia, F.; Kimpara, J.M.; Valenti, W.C.; Ambrosio, L.A. 2014. Emergy assessment of tilapia cage farming in a hydroelectric reservoir. Ecological Engineering, 68, 72-79. https://doi.org/10.1016/j.ecoleng.2014.03.076

Gerking, S.D. 1994. Feeding Ecology of Fish. Academic Press, San Diego, 416 pp.

Hahn, N.S.; Fugi, R. 2007. Alimentação de peixes em reservatórios brasileiros: alterações e conseqüências nos estágios iniciais do represamento. Oecologia Brasiliensis, 11(4): 469-480. https://doi.org/10.4257/oeco.2007.1104.01

Hahn, N.S.; Fugi, R.; Perreti, D.; Russo, M.R. 2002. Estrutura trófica da ictiofauna da planície de inundação do alto rio Paraná. Available at: http://www.peld.uem.br/Relat2002/pdf/comp_biotico_estruturaTrofica.pdf. Accessed on: Feb. 2, 2022.

Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. 2001. Past: paleontological statistics software package for education and data analysis. Paleotologia Electronica, 4(1): 9. Available at: https://palaeo-electronica.org/2001_1/past/issue1_01.htm. Accessed on: Feb. 2, 2022.

Hellawell, J.M.; Abel, R. 1971. A rapid volumetric method for the analysis of the food of fishes. Journal of Fish Biology, 3(1): 29-37. https://doi.org/10.1111/j.1095-8649.1971.tb05903.x

Hoshino, M.D.F.G.; Tavares-Dias, M. 2014. Ecologia parasitária de Metynnis lippincottianus (Characiformes: Serrasalmidae) da região da Amazônia oriental, Macapá, Estado do Amapá, Brasil. Acta Scientiarum - Biological Sciences, 36(2): 249-255. https://doi.org/10.4025/actascibiolsci.v36i2.19876

Hyslop, E.J. 1980. Stomach contents analysis—a review of methods and their application. Journal of Fish Biology, 17(4): 411-429. https://doi.org/10.1111/j.1095-8649.1980.tb02775.x

Júlio, H.F.J.; Bonecker, C.C.; Agostinho, A.A. 1997. Reservatório de Segredo e sua inserção na bacia do rio Iguaçu. In: Agostinho, A.A.; Gomes, L.C. (eds.). Reservatório de Segredo: bases ecológicas para o manejo. EDUEM, Maringá, pp. 1-17.

Kliemann, B.C.K.; Delariva, R.L.; Amorim, J.P.A.; Silva Ribeiro, C.; Silva, B.; Silveira, R.V.; Ramos, I.P. 2018. Dietary changes and histophysiological responses of a wild fish (Geophagus cf. proximus) under the influence of tilapia cage farm. Fisheries Research, 204: 337-347. https://doi.org/10.1016/j.fishres.2018.03.011

Kliemann, B.C.K.; Delariva, R.L.; Manoel, L.O.; Silva, A.P.S.; Veríssimo-Silveira, R.; Ramos, I.P. 2022. Do cage fish farms promote interference in the trophic niche of wild fish in Neotropical Reservoir? Fisheries Research, 248: 106198. https://doi.org/10.1016/j.fishres.2021.106198

Kliemann, B.C.K.; Galdioli, E.M.; Bialetzki, A.; Delariva, R.L. 2021. Morphological divergences as drivers of diet segregation between two sympatric species of Serrapinnus (Characidae: Cheirodontinae) in macrophyte stands in a neotropical floodplain lake. Neotropical Ichthyology, 19(2): 1-20. https://doi.org/10.1590/1982-0224-2020-0139

Lusher, A.L.; McHugh, M.; Thompson, R.C. 2013. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Marine Pollution Bulletin, 67(1-2): 94-99. https://doi.org/10.1016/j.marpolbul.2012.11.028

Montanhini Neto, R.; Nocko, H.; Ostrensky, A. 2015. Environmental characterization and impacts of fish farming in the cascade reservoirs of the Paranapanema river. Brazil. Aquaculture Environment Interaction, 6: 255-272. https://doi.org/10.3354/aei00130

Montanhini Neto, R.; Ostrensky, A. 2015. Nutrient load estimation in the waste of Nile tilapia Oreochromis niloticus (L.) reared in cages in tropical climate conditions. Aquaculture Research, 46(6): 1309-1322. https://doi.org/10.1111/are.12280

Moreira, L.H.A.; Takemoto, R.M.; Yamada, F.H.; Ceschini, T.L.; Pavanelli, G.C. 2009. Ecological aspects of metazoan endoparasites of Metynnis lippincottianus (Cope, 1870) (Characidae) from Upper Paraná River floodplain, Brazil. Helminthologia, 46(4): 214-219. https://doi.org/10.2478/s11687-009-0040-9

Mugnai, R.; Nessimian, J.L.; Baptista, D.F. 2010. Manual de identificação de macroinvertebrados aquáticos do Estado do Rio de Janeiro: para atividades técnicas, de ensino e treinamento em programas de avaliação da qualidade ecológica dos ecossistemas lóticos. Technical Books Editora, Rio de Janeiro, 176 pp.

Neves, M.P.; Delariva, R.L.; Guimarães, A.T.B.; Sanches, P.V. 2015. Carnivory during Ontogeny of the Plagioscion squamosissimus: A successful non-native fish in a lentic environment of the Upper Paraná River Basin. PLoS One, 10(11): e0141651. https://doi.org/10.1371/journal.pone.0141651

Neves, M.P.; Silva, J.C.; Baumgartner, D.; Baumgartner, G.; Delariva, R.L. 2018. Is resource partitioning the key? The role of intra-interspecific variation in coexistence among five small endemic fish species (Characidae) in subtropical rivers. Journal of Fish Biology, 93(2): 238-249. https://doi.org/10.1111/jfb.13662

Nobile, A.B.; Cunico, A.M.; Vitule, J.R.S.; Queiroz, J.; Vidotto‐Magnoni, A.P.; Garcia, D.A.Z.; Orsi, M.L.; Lima, F.P.; Acosta, A.A.; Silva, R.J.; Prado, F.D.; Porto‐Foresti, F.; Brandão, H.; Foresti, F.; Oliveira, C.; Ramos, I.P. 2020. Status and recommendations for sustainable freshwater aquaculture in Brazil. Reviews in Aquaculture, 12(3): 1495-1517. https://doi.org/10.1111/raq.12393

Nobile, A.B.; Zanatta, A.S.; Brandão, H.; Zica, E.O.P.; Lima, F.P.; Freitas-Souza, D.; Carvalho, E.D.; Silva, R.J.; Ramos, I.P. 2018. Cage fish farm act as a source of changes in the fish community of a Neotropical reservoir. Aquaculture, 495: 780-785. https://doi.org/10.1016/j.aquaculture.2018.06.053

Oksanen, A.J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; Mcglinn, D.; Minchin, P.R.; Hara, R.B.O.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Szoecs, E. 2021. Vegan. Encyclopedia of Food and Agricultural Ethics, 2395-2396. https://doi.org/10.1007/978-94-024-1179-9_301576

Pappis, T.; Kapusta, S.C.; Ojeda, T. 2021. Metodologia de extração de microplásticos associados a sedimentos de ambientes de água doce. Engenharia Sanitária e Ambiental, 26(4): 749-756. https://doi.org/10.1590/s1413-415220200143

Pedà, C.; Caccamo, L.; Fossi, M.C.; Gai, F.; Andaloro, F.; Genovese, L.; Perdichizzi, A.; Romeo, T.; Maricchiolo, G. 2016. Intestinal alterations in European sea bass Dicentrarchus labrax (Linnaeus, 1758) exposed to microplastics: Preliminary results. Environmental Pollution, 212: 251-256. https://doi.org/10.1016/j.envpol.2016.01.083

Pinheiro, C.; Oliveira, U.; Vieira, M. 2017. Occurrence and impacts of microplastics in freshwater fish. Journal of Aquaculture & Marine Biology, 5(6): 00138. https://doi.org/10.15406/jamb.2017.05.00138

Prejs, A.; Prejs, K. 1987. Feeding of tropical freshwater fishes: seasonality in resource availability and resource use. Oecologia, 71(3): 397-404. https://doi.org/10.1007/BF00378713

R Core Team. 2021. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna. Available at: https://www.R-project.org. Accessed on: Feb. 2, 2022.

Ramos, I.P.; Brandão, H.; Zanatta, A.S.; Zica, É.D.O.P.; Silva, R.J.; Rezende-Ayroza, D.M.M.; Carvalho, E.D. 2013. Interference of cage fish farm on diet, condition factor and numeric abundance on wild fish in a Neotropical reservoir. Aquaculture, 414-415: 56-62. https://doi.org/10.1016/j.aquaculture.2013.07.013

Ramos, I.P.; Vidotto-Magnoni, A.; Carvalho, E. 2008. Influence of cage fish farming on the diet of dominant fish species of a Brazilian reservoir (Tietê River, High Paraná River basin). Acta Limnologica Brasiliensia, 20(3), 245-252. Available at: https://www.actalb.org/article/627da198782aad07b35c1a23/pdf/alb-20-3-245.pdf. Accessed on: Feb. 2, 2022.

Ramos, I.P.; Zanatta, A.S.; Zica, É.O.P.; Silva, R.J.; Carvalho, E.D. 2010. Impactos ambientais de pisciculturas em tanques- rede sobre águas continentais brasileiras: revisão e opinião. In: Cyrino, J.E.P.; Furuya, W.M.; Ribeiro, R.P.; Scorvo Filho, J.D. (eds.). Tópicos especiais em biologia aquática e aquicultura III. Sociedade Brasileira de Aquicultura e Biologia Aquática, Jaboticabal, pp. 87-98.

Rochman, C.M.; Browne, M.; Halpern, B.; Hentschel, B.T.; Hoh, E.; Karapanagioti, H.K.; Rios-Mendoza, L.; Takada, H.; The, S.; Thompson, R.C. 2013. Classify plastic waste as hazardous. Nature, 494: 169-171. https://doi.org/10.1038/494169a

Ross, S.T. 1986. Resource partitioning in fish assemblages: a review of field studies. Copeia, 1986(2): 352-388. https://doi.org/10.2307/1444996

Russo, M.R.; Ferreira, A.; Dias, R.M. 2002. Disponibilidade de invertebrados aquáticos para peixes bentófagos de dois riachos da bacia do rio Iguaçu, estado do Paraná, Brasil. Acta Scientiarum - Biological and Health Sciences, 24: 411-417. https://doi.org/10.4025/actascibiolsci.v24i0.2313

Sá-Oliveira, J.C.; Angelini, R.; Isaac-Nahum, V.J. 2014. Diet and niche breadth and overlap in fish communities within the area affected by an Amazonian reservoir (Amapá, Brazil). Anais da Academia Brasileira de Ciências, 86(1): 383-405. https://doi.org/10.1590/0001-3765201420130053

Sandra, M.; Devriese, L.; Raedemaecker, F.; Lonneville, B.; Lukic, I.; Altvater, S.; Compa Ferrer, M.; Deudero, S.; Torres Hansjosten, B.; Alomar Mascaró, C.; Gin, I.; Vale, M.; Zorgno, M.; Mata Lara, M. 2020. Knowledge wave on marine litter from aquaculture sources. D2.2 Aqua-Lit project, Oostende, Belgium, 85 p.

Santos, G.M.; Mérona, B.; Juras, A.A.; Jégu, M. 2004. Peixes do baixo rio Tocantins: 20 anos depois da usina hidrelétrica de Tucuruí. Eletronorte. Available at: https://repositorio.inpa.gov.br/handle/1/35982. Accessed on: Feb. 2, 2022.

Schoener, T.W. 1974. Resource partitioning in ecological communities. Science, 185(4145): 27-39. https://doi.org/10.1126/science.185.4145.27

Sidonio, L.; Cavalcanti, I.; Capanema, L.; Morch, R.; Magalhães, G.; Lima, J.; Burns, V.; Alves, A.J.; Cavalcanti, I.; Burns, V. 2012. Panorama da aquicultura no Brasil: desafios e oportunidades Luiza Sidonio. Agroindústria, 35, 421-463. Available at: http://www.bndes.gov.br/bibliotecadigital. Accessed on: Feb. 2, 2022.

Silva, J.C.; Gubiani, É.A.; Neves, M.P.; Delariva, R.L. 2017. Coexisting small fish species in lotic neotropical environments: evidence of trophic niche differentiation. Aquatic Ecology, 51: 275-288. https://doi.org/10.1007/s10452-017-9616-5

Skirtun, M.; Sandra, M.; Strietman, W.J.; Van Den Burg, S.W.K.; Raedemaecker, F.; Devriese, L.I. 2022. Plastic pollution pathways from marine aquaculture practices and potential solutions for the North-East Atlantic region. Marine Pollution Bulletin, 174, 113178. https://doi.org/10.1016/j.marpolbul.2021.113178

Soares, B.E.; Benone, N.L.; Rosa, D.C.O.; Montag, L.F. A. 2020. Do local environmental factors structure the trophic niche of the Splash Tetra, Copella Arnoldi? A test in an Amazonian stream system. Acta Amazonica, 50(1): 54-60. https://doi.org/10.1590/1809-4392201802681

Tian, Y.; Yang, Z.; Yu, X.; Jia, Z.; Rosso, M.; Dedman, S.; Zhu, J.; Xia, Y.; Zhang, G.; Yang, J.; Wang, J. 2022. Can we quantify the aquatic environmental plastic load from aquaculture? Water Research, 219, 118551. https://doi.org/10.1016/J.WATRES.2022.118551

Ximenes, L.Q.L.; Fatima Mateus, L.A.; Penha, J.M.F. 2011. Variação temporal e espacial na composição de guildas alimentares da ictiofauna em lagoas marginais do Rio Cuiabá, Pantanal Norte. Biota Neotropica, 11(1): 205-215. https://doi.org/10.1590/S1676-06032011000100022

Yamada, F.H.; Moreira, L.; Ceschini, T.; Lizama, M.; Takemoto, R.; Pavanelli, G.C. 2012. Parasitism associated with length and gonadal maturity stage of the freshwater fish Metynnis lippincottianus (Characidae). Neotropical Helminthology, 6(2): 247-253.

Downloads

Published

2022-12-20

Issue

Section

Scientific Article

Most read articles by the same author(s)