Conservation of desaturase and elongases in a Brazilian freshwater carnivorous teleost: The red piranha (Pygocentrus nattereri)

Authors

DOI:

https://doi.org/10.20950/1678-2305/bip.2024.51.e935

Keywords:

Long-chain polyunsaturated fatty acids, Endogenous biosynthesis, Native species

Abstract

The endogenous biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFAs) in fish is species specific and depends on several factors, such as trophic level, feeding habits, environmental characteristics, taxonomic position and mainly the conservation and activity of fatty acid desaturases (Fads) and elongases (Elovl). Therefore, the study of the evolutionary conservation of these genes in different species of fish has become routine in order to understand lipid metabolism and its essentiality in each species studied. Despite its importance to fish, there is a lack of understanding how the environment and trophic level affect the capacity for biosynthesis of LC-PUFAs in freshwater carnivorous teleosts. The red piranha (Pygocentrus nattereri) is a carnivorous freshwater fish of interest in Brazilian aquaculture. In this present project, at a bioinformatics level, we identified the genes and characterized the proteins of the Fads2 and Elovls present in the red piranha genome. Sequence comparison and phylogenetic analysis suggested that the Fads2 and Elovls proteins are closely related to previously characterized proteins from freshwater carnivorous and herbivorous fish species. As a conclusion, we suggest that the red piranha has the possible, at least partial, ability to bioconvert C18 PUFA into LC-PUFAs through the activities of Fads2 and Elovls.

References

Bell, M. V., & Tocher, D. R. (2009). Biosynthesis of polyunsaturated fatty acids in aquatic ecosystems: General pathways and new directions. In M. Kainz, M. Brett & M. Arts (eds.), Lipids in Aquatic Ecosystems (pp. 211-236). Springer. https://doi.org/10.1007/978-0-387-89366-2_9

Bláhová, Z., Franek, R., Let, M., Blaha, M., Psenicka, M., & Mraz, J. (2022). Partial fads2 gene knockout diverts LCPUFA biosynthesis via an alternative Δ8 pathway with an impact on the reproduction of female zebrafish (Danio rerio). Genes, 13(4), 700. https://doi.org/10.3390/genes13040700

Castro, L. F. C., Monroig, Ó., Leaver, M. J., Wilson, J., Cunha, I., & Tocher, D. R. (2012). Functional desaturase Fads1 (Δ5) and Fads2 (Δ6) orthologues evolved before the origin of jawed vertebrates. PLoS One, 7(2), e31950. https://doi.org/10.1371/journal.pone.0031950

Castro, L. F. C., Tocher, D. R., & Monroig, O. (2016). Long-chain polyunsaturated fatty acid biosynthesis in chordates: Insights into the evolution of Fads and Elovl gene repertoire. Progress in Lipid Research, 62, 25-40. https://doi.org/10.1016/j.plipres.2016.01.001

Ferraz, R. B., Kabeya, N., Lopes-Marques, M., Machado, A. M., Ribeiro, R. A., Salaro, A. L., Ozório, R., Castro, L. F. C., & Monroig, Ó. (2019). A complete enzymatic capacity for long-chain polyunsaturated fatty acid biosynthesis is present in the Amazonian teleost tambaqui, Colossoma macropomum. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 227, 90-97. https://doi.org/10.1016/j.cbpb.2018.09.003

Ferraz, R. B., Machado, A. M., Navarro, J. C., Cunha, I., Ozório, R., Salaro, A. L., Castro, L. F. C., & Monroig, Ó. (2020). The fatty acid elongation genes elovl4a and elovl4b are present and functional in the genome of tambaqui (Colossoma macropomum). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 245, 110447. https://doi.org/10.1016/j.cbpb.2020.110447

Ferraz, R. B., Paixão, R. V., Lopes-Marques, M., Machado, A. M., Salaro, A. L., Castro, L. F. C., Monroig, Ó., & O’Sullivan, F. L. A. (2022). The repertoire of the elongation of very long-chain fatty acids (Elovl) protein family is conserved in tambaqui (Colossoma macropomum): Gene expression profiles offer insights into the sexual differentiation process. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 261, 110749. https://doi.org/10.1016/j.cbpb.2022.110749

Galindo, A., Garrido, D., Monroig, Ó., Pérez, J. A., Betancor, M. B., Acosta, N. G., Kabeya, N., Marrero, M. A., Bolaños, A., & Rodríguez, C. (2021). Polyunsaturated fatty acid metabolism in three fish species with different trophic levels. Aquaculture, 530, 735761. https://doi.org/10.1016/j.aquaculture.2020.735761

Garrido, D., Kabeya, N., Betancor, M. B., Pérez, J. A., Acosta, N. G., Tocher, D. R., Rodríguez, C., & Monroig, Ó. (2019). Functional diversification of teleost Fads2 fatty acyl desaturases occurs independently of the trophic level. Scientific Reports, 9(1), 11199. https://doi.org/10.1038/s41598-019-47709-0

Hashimoto, K., Yoshizawa, A. C., Okuda, S., Kuma, K., Goto, S., & Kanehisa, M. (2008). The repertoire of desaturases and elongases reveals fatty acid variations in 56 eukaryotic genomes. Journal of Lipid Research, 49(1), 183-191. https://doi.org/10.1194/jlr.m700377-jlr200

Kuah, M.-K., Jaya-Ram, A., & Shu-Chien, A. C. (2015). The capacity for long-chain polyunsaturated fatty acid synthesis in a carnivorous vertebrate: Functional characterisation and nutritional regulation of a Fads2 fatty acyl desaturase with Δ4 activity and an Elovl5 elongase in striped snakehead (Channa striata). Biochimica et Biophysica Acta (BBA)- Molecular and Cell Biology of Lipids, 1851(3), 248-260. https://doi.org/10.1016/j.bbalip.2014.12.012

Kuah, M.-K., Jaya-Ram, A., & Shu-Chien, A. C. (2016). A fatty acyl desaturase (fads2) with dual Δ6 and Δ5 activities from the freshwater carnivorous striped snakehead Channa striata. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 201, 146-155. https://doi.org/10.1016/j.cbpa.2016.07.007

Leonard, A. E., Pereira, S. L., Sprecher, H., & Huang, Y. S. (2004). Elongation of long-chain fatty acids. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 43(1), 36-54. https://doi.org/10.1016/s0163-7827(03)00040-7

Li, Y., Monroig, O., Zhang, L., Wang, S., Zheng, X., Dick, J. R., You, C., & Tocher, D. R. (2010). Vertebrate fatty acyl desaturase with Δ4 activity. Proceedings of the National Academy of Sciences, 107(39), 16840 16845. https://doi.org/10.1073/pnas.1008429107

Li, Y., Wen, Z., You, C., Xie, Z., Tocher, D. R., Zhang, Y., Wang, S., & Li, Y. (2020). Genome wide identification and functional characterization of two LC-PUFA biosynthesis elongase (elovl8) genes in rabbitfish (Siganus canaliculatus). Aquaculture, 522, 735127. https://doi.org/10.1016/j.aquaculture.2020.735127

Lim, Z. L., Senger, T., & Vrinten, P. (2014). Four amino acid residues influence the substrate chain-length and regioselectivity of Siganus canaliculatus Δ4 and Δ5/6 desaturases. Lipids, 49(4), 357-367. https://doi.org/10.1007/s11745-014-3880-0

Lopes-Marques, M., Kabeya, N., Qian, Y., Ruivo, R., Santos, M. M., Venkatesh, B., Tocher, D. R., Castro, L. F. C., & Monroig, Ó. (2018). Retention of fatty acyl desaturase 1 (fads1) in Elopomorpha and Cyclostomata provides novel insights into the evolution of long-chain polyunsaturated fatty acid biosynthesis in vertebrates. BMC Evolutionary Biology, 18(1), 157. https://doi.org/10.1186/s12862-018-1271-5

Lopes-Marques, M., Ozório, R., Amaral, R., Tocher, D. R., Monroig, Ó., & Castro, L. F. (2017). Molecular and functional characterization of a fads2 orthologue in the Amazonian teleost, Arapaima gigas. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 203, 84-91. https://doi.org/10.1016/j.cbpb.2016.09.007

Los, D. A., & Murata, N. (1998). Structure and expression of fatty acid desaturases. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1394(1), 3-15. https://doi.org/10.1016/s0005-2760(98)00091-5

Meesapyodsuk, D., Reed, D. W., Covello, P. S., & Qiu, X. (2007). Primary structure, regioselectivity, and evolution of the membrane-bound fatty acid desaturases of Claviceps purpurea. Journal of Biological Chemistry, 282(28), 20191-20199. https://doi.org/10.1074/jbc.M702196200

Morais, S., Castanheira, F., Martinez-Rubio, L., Conceição, L. E., & Tocher, D. R. (2012). Long chain polyunsaturated fatty acid synthesis in a marine vertebrate: Ontogenetic and nutritional regulation of a fatty acyl desaturase with Δ4 activity. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1821(4), 660-671. https://doi.org/10.1016/j.bbalip.2011.12.011

Morais, S., Monroig, O., Zheng, X., Leaver, M. J., & Tocher, D. R. (2009). Highly unsaturated fatty acid synthesis in Atlantic salmon: Characterization of ELOVL5- and ELOVL2-like elongases. Marine Biotechnology, 11(5), 627-639. https://doi.org/10.1007/s10126-009-9179-0

Oboh, A., Kabeya, N., Carmona-Antoñanzas, G., Castro, L. F. C., Dick, J. R., Tocher, D. R., & Monroig, O.(2017). Two alternative pathways for docosahexaenoic acid (DHA, 22:6n-3) biosynthesis are widespread among teleost fish. Scientific Reports, 7(1), 3889. https://doi.org/10.1038/s41598-017-04288-2

Omasits, U., Ahrens, C. H., Müller, S., & Wollscheid, B. (2014). Protter: Interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics, 30(6), 884-886. https://doi.org/10.1093/bioinformatics/btt607

Sam, K. K., Lau, N. S., Kuah, M. K., Lading, E. A., Shu-Chien, A. C. (2022). A complete inventory of long chain polyunsaturated fatty acid biosynthesis pathway enzymes in the miniaturized cyprinid Paedocypris micromegethes. Fish Physiology and Biochemistry, 48(4), 817-838. https://doi.org/10.1007/s10695-022-01082-4

Sayanova, O., Beaudoin, F., Libisch, B., Castel, A., Shewry, P. R., & Napier, J. A. (2001). Mutagenesis and heterologous expression in yeast of a plant Δ6‐fatty acid desaturase. Journal of Experimental Botany, 52(360), 1581-1585. https://doi.org/10.1093/jexbot/52.360.1581

Tinti, E., Geay, F., Lopes Rodrigues, M., Kestemont, P., Perpète, E. A., & Michaux, C. (2019). Molecular cloning and 3D model of a fatty-acid elongase in a carnivorous freshwater teleost, the European perch (Perca fluviatilis). 3 Biotech, 9(6), 242. https://doi.org/10.1007/s13205-019-1773-x

Tocher, D. R. (2010). Fatty acid requirements in ontogeny of marine and freshwater fish. Aquaculture Research, 41(5), 717-732. https://doi.org/10.1111/j.1365-2109.2008.02150.x

Trushenski, J. T., & Rombenso, A. N. (2020). Trophic levels predict the nutritional essentiality of polyunsaturated fatty acids in fish—Introduction to a special section and a brief synthesis. North American Journal of Aquaculture, 82(3), 241-250. https://doi.org/10.1002/naaq.10137

Tsirigos, K. D., Peters, C., Shu, N., Käll, L., & Elofsson, A. (2015). The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Research, 43(W1), W401-W407. https://doi.org/10.1093/nar/gkv485

Wang, S. Q., Wang, M., Zhang, H., Yan, X., Guo, H., You, C., Tocher, D. R., Chen, C., & Li, Y. (2020). Long chain polyunsaturated fatty acid metabolism in carnivorous marine teleosts: Insight into the profile of endogenous biosynthesis in golden pompano Trachinotus ovatus. Aquaculture, 522, 735127. https://doi.org/10.1111/are.14410

Xie, D., Fu, Z., Wang, S., You, C., Monroig, Ó., Tocher, D. R., & Li, Y. (2018). Characteristics of the fads2 gene promoter in marine teleost Epinephelus coioides and role of Sp1-binding site in determining promoter activity. Scientific Reports, 8(1), 5305. https://doi.org/10.1038/s41598-018-23668-w

Xie, D., Ye, J., Lu, M., Wang, S., You, C., & Li, Y. (2020). Comparison of activities of fatty acyl desaturases and elongases among six teleosts with different feeding and ecological habits. Frontiers in Marine Science, 7, 117. https://doi.org/10.3389/fmars.2020.00117

Downloads

Published

2025-04-11

Issue

Section

Scientific Article