Conservação de dessaturase e elongases em um teleósteo carnívoro brasileiro de água doce: a piranha vermelha (Pygocentrus nattereri)

Autores

DOI:

https://doi.org/10.20950/1678-2305/bip.2024.51.e935

Palavras-chave:

Ácidos graxos poli-insaturados de cadeia longa, Biossíntese endógena, Espécies nativas

Resumo

A biossíntese endógena de ácidos graxos poli-insaturados de cadeia longa (LC-PUFAs) em peixes é espécie específica e depende de vários fatores, como nível trófico, hábitos alimentares, características ambientais, posição taxonômica e principalmente conservação e atividade das dessaturases de ácidos graxos (Fads) e elongases (Elovl). Portanto, o estudo da conservação evolutiva desses genes em diferentes espécies de peixes se tornou rotineiro para entender o metabolismo lipídico e sua essencialidade em cada espécie estudada. Apesar de sua importância para os peixes, há a falta de compreensão de como o ambiente e o nível trófico afetam a capacidade de biossíntese de LC-PUFAs em teleósteos carnívoros de água doce. A piranha vermelha (Pygocentrus nattereri) é um peixe carnívoro de água doce de interesse para a aquicultura brasileira. No presente projeto, em nível de bioinformática, identificamos os genes e caracterizamos as proteínas das Fads2 e Elovls presentes no genoma da piranha vermelha. A comparação de sequências e a análise filogenética sugeriram que as proteínas Fads2 e Elovls estão intimamente relacionadas a proteínas previamente caracterizadas de espécies de peixes carnívoros e herbívoros de água doce. Como conclusão, sugerimos que a piranha vermelha tem a possível, pelo menos parcial, capacidade de bioconverter C18 PUFA em LC-PUFAs por meio das atividades de Fads2 e Elovls.

Referências

Bell, M. V., & Tocher, D. R. (2009). Biosynthesis of polyunsaturated fatty acids in aquatic ecosystems: General pathways and new directions. In M. Kainz, M. Brett & M. Arts (eds.), Lipids in Aquatic Ecosystems (pp. 211-236). Springer. https://doi.org/10.1007/978-0-387-89366-2_9

Bláhová, Z., Franek, R., Let, M., Blaha, M., Psenicka, M., & Mraz, J. (2022). Partial fads2 gene knockout diverts LCPUFA biosynthesis via an alternative Δ8 pathway with an impact on the reproduction of female zebrafish (Danio rerio). Genes, 13(4), 700. https://doi.org/10.3390/genes13040700

Castro, L. F. C., Monroig, Ó., Leaver, M. J., Wilson, J., Cunha, I., & Tocher, D. R. (2012). Functional desaturase Fads1 (Δ5) and Fads2 (Δ6) orthologues evolved before the origin of jawed vertebrates. PLoS One, 7(2), e31950. https://doi.org/10.1371/journal.pone.0031950

Castro, L. F. C., Tocher, D. R., & Monroig, O. (2016). Long-chain polyunsaturated fatty acid biosynthesis in chordates: Insights into the evolution of Fads and Elovl gene repertoire. Progress in Lipid Research, 62, 25-40. https://doi.org/10.1016/j.plipres.2016.01.001

Ferraz, R. B., Kabeya, N., Lopes-Marques, M., Machado, A. M., Ribeiro, R. A., Salaro, A. L., Ozório, R., Castro, L. F. C., & Monroig, Ó. (2019). A complete enzymatic capacity for long-chain polyunsaturated fatty acid biosynthesis is present in the Amazonian teleost tambaqui, Colossoma macropomum. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 227, 90-97. https://doi.org/10.1016/j.cbpb.2018.09.003

Ferraz, R. B., Machado, A. M., Navarro, J. C., Cunha, I., Ozório, R., Salaro, A. L., Castro, L. F. C., & Monroig, Ó. (2020). The fatty acid elongation genes elovl4a and elovl4b are present and functional in the genome of tambaqui (Colossoma macropomum). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 245, 110447. https://doi.org/10.1016/j.cbpb.2020.110447

Ferraz, R. B., Paixão, R. V., Lopes-Marques, M., Machado, A. M., Salaro, A. L., Castro, L. F. C., Monroig, Ó., & O’Sullivan, F. L. A. (2022). The repertoire of the elongation of very long-chain fatty acids (Elovl) protein family is conserved in tambaqui (Colossoma macropomum): Gene expression profiles offer insights into the sexual differentiation process. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 261, 110749. https://doi.org/10.1016/j.cbpb.2022.110749

Galindo, A., Garrido, D., Monroig, Ó., Pérez, J. A., Betancor, M. B., Acosta, N. G., Kabeya, N., Marrero, M. A., Bolaños, A., & Rodríguez, C. (2021). Polyunsaturated fatty acid metabolism in three fish species with different trophic levels. Aquaculture, 530, 735761. https://doi.org/10.1016/j.aquaculture.2020.735761

Garrido, D., Kabeya, N., Betancor, M. B., Pérez, J. A., Acosta, N. G., Tocher, D. R., Rodríguez, C., & Monroig, Ó. (2019). Functional diversification of teleost Fads2 fatty acyl desaturases occurs independently of the trophic level. Scientific Reports, 9(1), 11199. https://doi.org/10.1038/s41598-019-47709-0

Hashimoto, K., Yoshizawa, A. C., Okuda, S., Kuma, K., Goto, S., & Kanehisa, M. (2008). The repertoire of desaturases and elongases reveals fatty acid variations in 56 eukaryotic genomes. Journal of Lipid Research, 49(1), 183-191. https://doi.org/10.1194/jlr.m700377-jlr200

Kuah, M.-K., Jaya-Ram, A., & Shu-Chien, A. C. (2015). The capacity for long-chain polyunsaturated fatty acid synthesis in a carnivorous vertebrate: Functional characterisation and nutritional regulation of a Fads2 fatty acyl desaturase with Δ4 activity and an Elovl5 elongase in striped snakehead (Channa striata). Biochimica et Biophysica Acta (BBA)- Molecular and Cell Biology of Lipids, 1851(3), 248-260. https://doi.org/10.1016/j.bbalip.2014.12.012

Kuah, M.-K., Jaya-Ram, A., & Shu-Chien, A. C. (2016). A fatty acyl desaturase (fads2) with dual Δ6 and Δ5 activities from the freshwater carnivorous striped snakehead Channa striata. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 201, 146-155. https://doi.org/10.1016/j.cbpa.2016.07.007

Leonard, A. E., Pereira, S. L., Sprecher, H., & Huang, Y. S. (2004). Elongation of long-chain fatty acids. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 43(1), 36-54. https://doi.org/10.1016/s0163-7827(03)00040-7

Li, Y., Monroig, O., Zhang, L., Wang, S., Zheng, X., Dick, J. R., You, C., & Tocher, D. R. (2010). Vertebrate fatty acyl desaturase with Δ4 activity. Proceedings of the National Academy of Sciences, 107(39), 16840 16845. https://doi.org/10.1073/pnas.1008429107

Li, Y., Wen, Z., You, C., Xie, Z., Tocher, D. R., Zhang, Y., Wang, S., & Li, Y. (2020). Genome wide identification and functional characterization of two LC-PUFA biosynthesis elongase (elovl8) genes in rabbitfish (Siganus canaliculatus). Aquaculture, 522, 735127. https://doi.org/10.1016/j.aquaculture.2020.735127

Lim, Z. L., Senger, T., & Vrinten, P. (2014). Four amino acid residues influence the substrate chain-length and regioselectivity of Siganus canaliculatus Δ4 and Δ5/6 desaturases. Lipids, 49(4), 357-367. https://doi.org/10.1007/s11745-014-3880-0

Lopes-Marques, M., Kabeya, N., Qian, Y., Ruivo, R., Santos, M. M., Venkatesh, B., Tocher, D. R., Castro, L. F. C., & Monroig, Ó. (2018). Retention of fatty acyl desaturase 1 (fads1) in Elopomorpha and Cyclostomata provides novel insights into the evolution of long-chain polyunsaturated fatty acid biosynthesis in vertebrates. BMC Evolutionary Biology, 18(1), 157. https://doi.org/10.1186/s12862-018-1271-5

Lopes-Marques, M., Ozório, R., Amaral, R., Tocher, D. R., Monroig, Ó., & Castro, L. F. (2017). Molecular and functional characterization of a fads2 orthologue in the Amazonian teleost, Arapaima gigas. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 203, 84-91. https://doi.org/10.1016/j.cbpb.2016.09.007

Los, D. A., & Murata, N. (1998). Structure and expression of fatty acid desaturases. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1394(1), 3-15. https://doi.org/10.1016/s0005-2760(98)00091-5

Meesapyodsuk, D., Reed, D. W., Covello, P. S., & Qiu, X. (2007). Primary structure, regioselectivity, and evolution of the membrane-bound fatty acid desaturases of Claviceps purpurea. Journal of Biological Chemistry, 282(28), 20191-20199. https://doi.org/10.1074/jbc.M702196200

Morais, S., Castanheira, F., Martinez-Rubio, L., Conceição, L. E., & Tocher, D. R. (2012). Long chain polyunsaturated fatty acid synthesis in a marine vertebrate: Ontogenetic and nutritional regulation of a fatty acyl desaturase with Δ4 activity. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1821(4), 660-671. https://doi.org/10.1016/j.bbalip.2011.12.011

Morais, S., Monroig, O., Zheng, X., Leaver, M. J., & Tocher, D. R. (2009). Highly unsaturated fatty acid synthesis in Atlantic salmon: Characterization of ELOVL5- and ELOVL2-like elongases. Marine Biotechnology, 11(5), 627-639. https://doi.org/10.1007/s10126-009-9179-0

Oboh, A., Kabeya, N., Carmona-Antoñanzas, G., Castro, L. F. C., Dick, J. R., Tocher, D. R., & Monroig, O.(2017). Two alternative pathways for docosahexaenoic acid (DHA, 22:6n-3) biosynthesis are widespread among teleost fish. Scientific Reports, 7(1), 3889. https://doi.org/10.1038/s41598-017-04288-2

Omasits, U., Ahrens, C. H., Müller, S., & Wollscheid, B. (2014). Protter: Interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics, 30(6), 884-886. https://doi.org/10.1093/bioinformatics/btt607

Sam, K. K., Lau, N. S., Kuah, M. K., Lading, E. A., Shu-Chien, A. C. (2022). A complete inventory of long chain polyunsaturated fatty acid biosynthesis pathway enzymes in the miniaturized cyprinid Paedocypris micromegethes. Fish Physiology and Biochemistry, 48(4), 817-838. https://doi.org/10.1007/s10695-022-01082-4

Sayanova, O., Beaudoin, F., Libisch, B., Castel, A., Shewry, P. R., & Napier, J. A. (2001). Mutagenesis and heterologous expression in yeast of a plant Δ6‐fatty acid desaturase. Journal of Experimental Botany, 52(360), 1581-1585. https://doi.org/10.1093/jexbot/52.360.1581

Tinti, E., Geay, F., Lopes Rodrigues, M., Kestemont, P., Perpète, E. A., & Michaux, C. (2019). Molecular cloning and 3D model of a fatty-acid elongase in a carnivorous freshwater teleost, the European perch (Perca fluviatilis). 3 Biotech, 9(6), 242. https://doi.org/10.1007/s13205-019-1773-x

Tocher, D. R. (2010). Fatty acid requirements in ontogeny of marine and freshwater fish. Aquaculture Research, 41(5), 717-732. https://doi.org/10.1111/j.1365-2109.2008.02150.x

Trushenski, J. T., & Rombenso, A. N. (2020). Trophic levels predict the nutritional essentiality of polyunsaturated fatty acids in fish—Introduction to a special section and a brief synthesis. North American Journal of Aquaculture, 82(3), 241-250. https://doi.org/10.1002/naaq.10137

Tsirigos, K. D., Peters, C., Shu, N., Käll, L., & Elofsson, A. (2015). The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Research, 43(W1), W401-W407. https://doi.org/10.1093/nar/gkv485

Wang, S. Q., Wang, M., Zhang, H., Yan, X., Guo, H., You, C., Tocher, D. R., Chen, C., & Li, Y. (2020). Long chain polyunsaturated fatty acid metabolism in carnivorous marine teleosts: Insight into the profile of endogenous biosynthesis in golden pompano Trachinotus ovatus. Aquaculture, 522, 735127. https://doi.org/10.1111/are.14410

Xie, D., Fu, Z., Wang, S., You, C., Monroig, Ó., Tocher, D. R., & Li, Y. (2018). Characteristics of the fads2 gene promoter in marine teleost Epinephelus coioides and role of Sp1-binding site in determining promoter activity. Scientific Reports, 8(1), 5305. https://doi.org/10.1038/s41598-018-23668-w

Xie, D., Ye, J., Lu, M., Wang, S., You, C., & Li, Y. (2020). Comparison of activities of fatty acyl desaturases and elongases among six teleosts with different feeding and ecological habits. Frontiers in Marine Science, 7, 117. https://doi.org/10.3389/fmars.2020.00117

Downloads

Publicado

2025-04-11

Edição

Seção

Artigo cientí­fico