PRÉ-BERí­"¡ÁRIO DO CAMARÃO EM BIOFLOCOS SOBRE DIFERENTES DENSIDADES DE ESTOCAGEM

Autores

  • Priscila Costa Rezende Universidade Federal de Santa Catarina -  UFSC, Centro de Ciências Agrárias, Departamento de Aquicultura, Laboratório de Camarí­µes Marinhos,
  • Delano Dias Schleder Instituto Federal Catarinense -  IFC, Campus de Araquari,
  • Walter Quadros Seiffert Universidade Federal de Santa Catarina -  UFSC, Centro de Ciências Agrárias, Departamento de Aquicultura, Laboratório de Camarí­µes Marinhos
  • Edemar Roberto Andreatta Universidade Federal de Santa Catarina -  UFSC, Centro de Ciências Agrárias, Departamento de Aquicultura, Laboratório de Camarí­µes Marinhos,
  • Felipe Nascimento Vieira Universidade Federal de Santa Catarina -  UFSC, Centro de Ciências Agrárias, Departamento de Aquicultura, Laboratório de Camarí­µes Marinhos,

DOI:

https://doi.org/10.20950/1678-2305.2019.45.4.533

Palavras-chave:

Litopenaeus vannamei, post-larvae, stress test, sustainability

Resumo

O estudo avaliou diferentes densidades de estocagem no pré-berçário de camarãoâ€"˜brancoâ€"˜doâ€"˜pací­­fico em sistema de bioflocos. Tanques (60 L) foram estocados com pós-larva estádio 5 (PL 5) em cinco densidades (80, 100, 120, 140 e 160 PLs L-1), em triplicata, resultando em 15 unidades experimentais. PLs foram alimentados nove vezes ao dia usando ração comercial. O melaço foi adicionado em todos os tratamentos quatro vezes ao dia em uma proporção média de carbono: nitrogênio de 14,7: 1. O experimento foi conduzido até que as PLs atingissem o estádio PL 20, nesse perí­­odo, a qualidade da água, sobrevivência, ganho de peso e sobrevivência ao estresse salino foram avaliados. Para tratamentos acima de 100 PLs L-1, o total de sólidos suspensos foi superior ao recomendado (700 mg L-1). Além disso, o tratamento com 160 PL L-1 apresentou maiores ní­­veis de nitrogênio amoniacal total (> 10 mg L-1), resultando em menor sobrevivência neste tratamento. Não houve diferença nos demais parí­¢metros de desempenho avaliados (peso final e sobrevivência ao estresse salino) entre os tratamentos. Concluiu-se que o préâ€"˜berçário de camarão-branco-do-pací­­fico pode ser realizado utilizando densidades de até 140 pós-larvas L-1 em sistema de bioflocos sem comprometer o desempenho zootécnico do camarão.

Referências

APHA í  American Public Health Association. 2005. Standard methods for the examination of water and wastewater. Washington: Byrd Prepress.

Arnold, S.J.; Coman, F.E.; Jackson, C.J.; Groves, S.A. 2009. High-intensity, zero water-exchange production of juvenile tiger shrimp, Penaeus monodon: an evaluation of artificial substrates and stocking density. Journal of Aquaculture, 293(1-2): 42-48. http://dx.doi.org/10.1016/j.aquaculture.2009.03.049.

Arnold, S.J.; Sellars, M.J.; Crocos, P.J.; Coman, G.J. 2006. Intensive production of juvenile tiger shrimp Penaeus monodon: an evaluation of stocking density and artificial substrates. Aquaculture (Amsterdam, Netherlands), 261(1): 890-896. http://dx.doi.org/10.1016/j.aquaculture.2006.07.036.

Avnimelech, Y. 1999. Carbon nitrogen ratio as a control element in aquaculture systems. Aquaculture (Amsterdam, Netherlands), 176(3-4): 227-235. http://dx.doi.org/10.1016/S0044-8486(99)00085-X.

Avnimelech, Y. 2009. Biofloc technology: a practical guide book. Baton Rouge: Journal of the World Aquaculture Society. 182p.

Avnimelech, Y. 2014. Biofloc technology í  A Practical Guide book. 3rd ed. Baton Rouge: The World Aquaculture Society. 258p.

Barak, Y.; Cytryn, E.; Gelfand, I.; Krom, M.; Van Rijn, J. 2003. Phosphorus removal in a prototype, recirculating aquaculture system. Aquaculture (Amsterdam, Netherlands), 220(1-4): 313-326. http://dx.doi.org/10.1016/S0044-8486(02)00342-3.

Barbieri, E.; Bondioli, A.C.V.; Melo, C.B.; Henriques, M.B. 2014. Effects of low salinity on juvenile pink shrimp Farfantepenaeus paulensis (Perez-Farfante 1967, Crustacea). Marine and Freshwater Behaviour and Physiology, 47(4): 273-283. http://dx.doi.org/10.1080/10236244.2014.929255.

Barbieri, E.; Medeiros, A.M.Z.; Henriques, M.B. 2016. Oxygen consumption and ammonia excretion of juvenile pink shrimp (Farfantepenaeus paulensis) in culture: Temperature effects. Marine and Freshwater Behaviour and Physiology, 49(1): 19-25. http://dx.doi.org/10.1080/10236244.2015.1108057.

Cobo, M. DE L.; Sonnenholzner, S.; Wille, M.; Sorgeloos, P. 2012. Ammonia tolerance of Litopenaeus vannamei (Boone) larvae. Aquaculture Research, 45(3): 470-475. https://doi.org/10.1111/j.1365-2109.2012.03248.x.

Cohen, J.M.; Samocha, T.M.; Fox, J.M.; Gandy, R.L.; Lawrence, A.L. 2005. Characterization of water quality factors during intensive raceway production of juvenile Litopenaeus vannamei using limited discharge and biosecure management tools. Aquacultural Engineering, 32(3-4): 425-442. http://dx.doi.org/10.1016/j.aquaeng.2004.09.005.

Crab, R.; Kochva, M.; Verstraete, W.; Avnimelech, Y. 2009. Bioflocs technology application in overwintering of tilapia. Aquacultural Engineering, 40(3): 105-112. http://dx.doi.org/10.1016/j.aquaeng.2008.12.004.

FAO í  Food and Agriculture Organization. 2009. The state of world fisheries and aquaculture. Rome: FAO Fisheries Department.

Krummenauer, D.; Cavalli, R.O.; Ballester, E.L.C.; Wasielesky Junior, W.J. 2010. Feasibility of pacific white shrimp Litopenaeus vannamei culture in southern Brazil: effects of stocking density and a single or adouble crop management strategy in earthen ponds. Aquaculture Research, 41(2): 240-248. http://dx.doi.org/10.1111/j.1365-2109.2009.02326.x.

Krummenauer, D.; Wasielesky Júnior, W.; Cavalli, R.O.; Peixoto, S.; Zogbi, P.R. 2006. Viability of culturing the shrimp Farfantepenaeus paulensis (Crustacea, Decapoda) in cages under diferente stocking densities during autumn in southern Brazil. Ciência Rural, 36(1): 252-257. http://dx.doi.org/10.1590/S0103-84782006000100039.

Li, S.; Willits, D.H.; Browdy, C.L.; Timmons, M.B.; Losordo, T.M. 2009. Thermal modeling of greenhouse aquaculture raceway systems. Aquacultural Engineering, 41(1): 1-13. http://dx.doi.org/10.1016/j.aquaeng.2009.04.002.

Li, X.; Dong, S.; Lei, Y.; Li, Y. 2007. The effect of stocking density of Chinese mitten crab Eriocheirsinensis on rice and crab seed yields in rice-crab culture systems. Aquaculture (Amsterdam, Netherlands), 273(4): 487-493. http://dx.doi.org/10.1016/j.aquaculture.2007.10.028.

Lin, Y.; Chen, J.C. 2001. Acute toxicity of ammonia on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Journal of Experimental Marine Biology and Ecology, 259(1): 109-119. http://dx.doi.org/10.1016/S0022-0981(01)00227-1. PMid:11325379.

McAbee, B.J.; Browdy, C.L.; Rhodes, R.J.; Stokes, A.D. 2003. The use of greenhouse-enclosed raceway systems for the superintensive production of pacific white shrimp Litopenaeus vannamei in the United States. Global Aquaculture Advocate, 6: 40-43.

McIntosh, D.; Samocha, T.M.; Jones, E.R.; Lawrence, A.L.; Horowitz, S.; Horowitz, A. 2001. Effects of two commercially available low-protein diets (21% and 31%) on water and sediment quality, and on the production of L. vannamei in an outdoor tank system with limited water discharge. Aquacultural Engineering, 25(2): 69-82. http://dx.doi.org/10.1016/S0144-8609(01)00073-5.

McIntosh, R.P. 2000. Changing paradigms in shrimp farming: III. Pond design and operation considerations. Global Aquaculture Advocate, 3: 42-45.

Moss, K.R.K.; Moss, S.M. 2004. Effects of artificial substrate and stocking density on the nursery production of pacific white shrimp Litopenaeus vannamei. Journal of the World Aquaculture Society, 35(4): 537-542. http://dx.doi.org/10.1111/j.1749-7345.2004.tb00121.x.

Naranjo-Paramo, J.; Hernandez-Llamas, A.; Villarreal, H. 2004. Effect of stocking density on growth, survival and yield of juvenile redclaw crayfish Cheraxquadricarinatus (Decapoda: Parastacidae) in gravel-line commercial nursery ponds. Aquaculture (Amsterdam, Netherlands), 242(1-4): 197-206. http://dx.doi.org/10.1016/j.aquaculture.2004.05.017.

Peixoto Junior, S.; Wasielesky Junior, W.J.; Louzada Junior, L. 2003. Comparative analysis of pink shrimp, Farfantepenaeus paulensis, and pacific white shrimp, Litopenaeus vannamei, culture in extreme Southern Brazil. Journal of Applied Aquatic, 14(1-2): 101-112. http://dx.doi.org/10.1300/J028v14n01_07.

Pontinha, V.A.; Vieira, F.N.; Hayashi, L. 2018. Mortality of pacific white shrimp submitted to hypothermic and hyposalinic stress. Boletim do Instituto de Pesca, 44(2): e310. http://dx.doi.org/10.20950/1678-2305.2018.310.

Rezende, C.P.; Schleder, D.D.; Silva, V.H.; Henriques, M.F.; Lorenzo, A.M.; Seiffert, W.Q.; Andreatta, E.R.; Vieira, N.F. 2018. Prenursery of the Pacific white shrimp in a biofloc system using different artificial substrates. Aquacultural Engineering, 82: 25-30. http://dx.doi.org/10.1016/j.aquaeng.2018.04.001.

Samocha, T.M.; Gandy, R.L.; McMahon, D.Z.; Blacher, T.; Benner, R.A.; Lawrence, A.L. 2002. Use of intensive nursery raceway system with limited water discharge to improve production of the Pacific white shrimp Litopenaeus vannamei. In: World Aquaculture Society Annual Meeting, Beijing, 23-27 apr./2002. Proceedings... Beijing: Society Annual Meeting.

Samocha, T.M.; Patnaik, S.; Speed, M.; Ali, A.M.; Burger, J.M.; Almeida, R.V.; Ayub, Z.; Harisanto, M.; Horowitz, A.; Brock, D.L. 2007. Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacultural Engineering, 36(2): 184-191. http://dx.doi.org/10.1016/j.aquaeng.2006.10.004.

Sandifer, P.A.; Hopkins, J.T. 1996. Conceptual design of a sustainable pond-based shrimp culture system. Aquacultural Engineering, 15(1): 41-52. http://dx.doi.org/10.1016/0144-8609(95)00003-W.

Schveitzer, R.; Arantes, R.; Costódio, P.F.S.; Santo, C.M.E.; Arana, L.V.; Seiffert, W.Q.; Andreatta, E.R. 2013. Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacultural Engineering, 56: 59-70. http://dx.doi.org/10.1016/j.aquaeng.2013.04.006.

Schveitzer, R.; Lorenzo, M.A.; Vieira, F.N.; Pereira, S.A.; Mourií­±o, J.L.P.; Seiffert, W.Q.; Andreatta, E.R. 2017. Nursery of yung Litopenaeus vannamei post-larvae reared in biofloc- and microalgae-based system. Aquacultural Engineering, 78: 140-145. http://dx.doi.org/10.1016/j.aquaeng.2017.07.001.

Strickland, J.D.H.; Parsons, T.R. 1972. A practical handbook of seawater analysis. Bulletin - Fisheries Research Board of Canada, 167: 1-205.

Van Wyk, P.; Scarpa, J. 1999. Water quality requirements and management. In: Van Wyk, P.; Davis-Hodgkins, M.; Laramore, R.; Main, K.; Mountain, J.; Scarpa J. Farming marine shrimp in recirculating freshwater systems. Tallahassee: Florida Department of Agriculture and Consumer Services. p. 128-138.

Wyban, J.A.; Sweeney, J.N. 1991. Intensive shrimp production technology. Oceanic Institute Shrimp Manual. Honolulu: The Oceanic Institute. 158p.

Zar, J.H. 1984. Biostatistical analisys. New Jersey: Prentice-Hall. 662p.

Downloads

Publicado

2019-12-03

Edição

Seção

Artigo cientí­fico